
-165- jpc.mcmaster.ca

Journal of
Professional Communication

Live robot programming
Jason Lim★

Singapore-ETH Centre for Global Sustainability (Singapore)
	

A r t i c l e i n f o
	 	

A b s t r A c t

Article Type:
Research Article

	
Article History:

Received: 2013-08-12
Revised: 2014-04-14
Accepted: 2014-04-18

	
Keywords:
Live programming
Max/MSP
Robotics

	

Industrial robots are general-purpose machines. To perform a
specific task, a robot is given instructions. This process is re-
ferred to as robot programming and can be approached in sev-
eral ways. In online/teach programming, an operator controls
the robot using a teach pendant and leads it through its task.
This is recorded and can be replayed. In offline programming,
instructions are pre-written in a programming language on a
separate computer and then sent to the robot for execution.
Referencing the field of computer music, this paper explores
an alternative approach – live programming. Here, instructions
are written and edited on-the-fly, triggering immediate robotic
responses. As a proof of concept, the music synthesis software
Max/MSP is extended with robot programming functionalities
and used as a live environment to control a robotic folding
process. This paper describes the development of a Max/MSP
patch for folding aluminum strips and discusses the results of
its use.

©Journal of Professional Communication, all rights reserved.
	

T he industrial robot arm is reminiscent of a human arm. It has a shoulder,
an elbow and a wrist; it reaches out to touch and manipulate objects.
However, in place of a hand, the robot has a tool called an end-effector,
which is replaceable. While humans control their arms innately, a robot

must be instructed on how to move and what to do. By changing the end-effector
and instruction set, a robot’s physical capabilities and behavior can be modified.
This makes it a highly versatile machine. Though originally developed for use in
factories, industrial robots have found application in other domains, including
creative practices such as art (Diaz, 2012), music (Bökesoy & Adler, 2011) and
architecture (Gramazio & Kohler, 2008).

★Corresponding author (Jason Lim)
Email: jason.lim@arch.ethz.ch Phone: + 65-84814300
©Journal of Professional Communication, ISSN: 1920-685. All rights reserved. See front matter.

Journal of Professional Communication 3(2):165-175, 2014

-166- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

Programming may be understood as a means to communicate a robot us-
er’s intention to the machine. The two standard robot programming approach-
es are online and offline. A third approach, live programming, is proposed as
an alternative. Conceptually, the three can be likened to different pedagogical
methods – ways of teaching a robot what it needs to do. An online program is
a demonstration; an offline program resembles an instructional manual; while
a live program aspires to be conversational.

A case study is set up to explore the potentials of the live programming
approach. The music synthesis software Max/MSP is extended with custom
robot programming functionalities and used as a live environment to control a
robotic folding process. A Max/MSP program (patch) is written that provides
a lightweight robotic arm with real-time instructions on how to fold thin alu-
minium strips. The objective is to produce a variety of folded forms by run-
ning the patch or editing it on-the-fly. The development and use of the patch
is described and the merits and drawbacks of live programming as a means of
human-robot interaction is discussed.

Online programming – teaching by demonstration

Online programming encompasses teach pendant and lead-through pro-
gramming. A human operator runs a robot through an entire process by con-
trolling it via the teach pendant, a handheld control terminal, or by manually
leading it. The sequence of motions and actions performed in this demonstra-
tion is recorded as a program that can be replayed.

Online programming is intuitive because it involves the direct manipula-
tion of the robot. Thus, one of its key advantages is accessibility. It is an effec-
tive approach for programming processes that require repetition. However, a
program created in this way is highly specific. If the robotic process changes,
the program cannot be modified and reused. For example, to produce a range
of unique folded forms, the robot has to be retaught from scratch each time. In
this case, online programming would be too time-consuming to be practical.

Offline programming – writing an instruction manual

In offline programming, instructions are created separately on a comput-
er. They have to be written in a programming language which the robot can

-167- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

interpret. Robot manufacturers provide such languages which are specific to
their machines. A program is written, saved and uploaded to the robot, which
then either completes the task or fails due to an unanticipated contingency.
Offline programming may be likened to writing a manual. The task is known
in advance, instructions are pre-written and once published/uploaded, can-
not be changed.

One disadvantage of offline programming is its inaccessibility. Users
have to learn the syntax and semantics of a robot programming language be-
fore being able to use it. Furthermore, these languages are often inexpressive
and use technical notations; this raises the difficulty of reading and writing
such programs. However, complex logics are easier to express in program-
ming languages as they offer constructs such as conditionals and loops for
structuring code. Furthermore, an offline program may be generalized. For
example, by accepting an angle argument, a single program can produce dif-
ferent folds.

Live programming – having a conversation

In conventional programming practices, code is written or edited, then
compiled into a program and subsequently run. There is a significant delay
between a programming action and produced results. Live programming
eliminates compilation and combines the two remaining steps into one. Code
changes yield immediate feedback.

In a live robot programming scenario, the machine is in a continuous
state of attention and reacts instantly to new instructions. These instructions
may be notated in textual or graphical programming languages. Such a pro-
gram may therefore be generalized, while a program created through online/
teach methods is specific. In comparison to offline programming, the instruc-
tion set need not be pre-planned in its entirety. A programmer may give an in-
struction, observe the robot’s reaction and then decide on the next instruction.
One responds to the other in a conversational manner.

Extending Max/MSP for live robot programming

Live programming is widely practiced in the field of computer music.
Musicians want to utilize algorithmic procedures for composition and be able

-168- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

to edit aural results in real-time. Many audio synthesis software systems to-
day are thus live programming environments. Text-based examples include
SuperCollider and ChucK, while graphical based examples include PureData
and Max/MSP.

Max/MSP is selected as an environment to test the application of live
programming concepts to robotics. A Max/MSP program, also referred to as
a patch, is a data flow graph with objects as the nodes and patch-cords as the
edges. It is visualized as boxes connected by lines on a canvas. Data in the
form of messages is passed from one object to another. An object receives a
message in its inlet, processes the data, and sends a new message out of its
outlet. The way that data flows through the graph determines the patch’s be-
havior. Max/MSP is based on a reactive dataflow programming model. The
graph automatically re-executes when events such as the modification of a
node or edge occur, resulting in a different outcome. This creates the live pro-
gramming experience.

 A Java external is written to extend Max/MSP with robot control func-
tionalities. It consists of a package of five classes (see Figure 1); three of them
– ScriptBuilder, Listener and Sender can be directly assessed in the Max/MSP
environment through the mxj object; the remaining two classes provide robot
communication and command generation functionalities. As a proof of con-
cept, a robotic folding process is programmed and controlled in Max/MSP.
A Universal Robot UR5 robotic arm is used. Equipped with a pneumatically
actuated gripper, it positions 1mmm thick aluminium strips in an automated
clamp and folds them into different configurations. This process was origi-
nally explored by students in an architecture studio at the Future Cities Labo-
ratory (Lim, Gramazio & Kohler, 2013), and is further developed here.

Figure 1: UML diagram of LiveFold Java package/external

-169- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

Creating the patch

The initial version of the patch consisted of message, mxj and button ob-
jects. Three main messages (on, off and move) are the fundamental building
blocks of the program. On and off messages open and close the robot’s gripper
and the actuated clamp, while move messages control the robot’s motions.
The three mxj objects are scriptbuilder, sender and listener. The scriptbuilder
object interprets received messages and builds a list of robot commands. This
list is passed on to the sender object, which automatically opens a socket to
the robot and forwards it the commands. Meanwhile, the listener object tracks
the real-time state of the robot. The buttons are mainly used to trigger multiple
messages at the same time.

Robot actions were prototyped by assembling together different move
and on/off messages. These messages are connected to the scriptbuilder ob-
ject, which, in turn, is linked to the sender object. Any changes made to this
graph, either to its nodes (adding, modifying or deleting objects) or edges
(creating, deleting or re-routing patch-cords), triggers a live robotic response.
Three types of actions were eventually prototyped: pull, rotate and fold (fig-
ure 2). Each action is a collection of move and on/off messages sequenced in a
different way. At this point, a decision was made to encapsulate each action as
a new kind of message. To do this, pull, rotate and fold functions were added
to the Scriptbuilder class. Subsequently, these new messages became the fun-
damental building blocks of the patch.

Figure 2: Three key robotic actions

-170- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

The final version of the patch is composed of three functional groups:
programming, listening and drawing (figure 3). The programming group is
similar to initial patches, except that pull, fold and rotate messages are primar-
ily used in place of move and on/off messages. The listening group is respon-
sible for updating a virtual kinematic model of the robot based on its real-time
state. The drawing group creates a window for visualizing this virtual robot.
The listening and drawing groups are not essential for controlling the robot,
but were created to give the programmer additional feedback.

Figure 3: Final version of patch (edit mode)

The patch may also be run in presentation mode as a simplified interface
geared for real-time control (figure 4). Important user interface objects remain
on the canvas and are enlarged, while the rest of the graph from the default
edit mode is hidden from view. Three main buttons are exposed that trig-
ger pull, rotate and fold robotic actions. Based on the permutation of button-
presses, different folded forms are eventually produced.

-171- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

Figure 4: Patch in presentation mode (foreground) controlling the robotic folding process (back-
ground).

Benefits and drawbacks

Material behaviour plays a critical role in the folding process. To get a
desired fold angle, the robot has to over-fold the aluminium strip by a cer-
tain amount, and at a specific speed and acceleration. The correct values for
these parameters were unknown beforehand. With the live Max/MSP patch,
different values could be tested and the results immediately assessed. Conse-
quently, the folding action was quickly calibrated and accurate folds were pro-
duced. Therefore one key advantage of live programming is that it facilitates
users in gaining robotic control over unpredictable material processes.

Live programming enabled a more exploratory approach towards patch
development to be taken. This is especially beneficial when the desired pro-
gram outcome is vaguely defined. During the patch development process,
message objects were connected in various permutations and empirically
tested. A general folding concept steered this bricoleur-style (Turkle & Pap-
ert, 1990) approach. Through these rapid exploratory cycles, several robotic
actions were prototyped which could produce unanticipated aesthetic effects.
Furthermore, an executing program may be interrupted at any point and the

-172- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

folded strip physically evaluated. This informs subsequent decision-making.
For example, messages may be sent in a different sequence. As a result, a
strip’s final form is not pre-determined, but can be designed in a more sketch-
like manner.

However, ‘live-ness’ also presents drawbacks. Since the sender object is
‘always on’, care must be exercised when editing the patch in order to prevent
inadvertent robotic motions that may damage the folded artifact. In certain
situations, it is desirable for the robot to go ‘offline’. For example, changing a
single parameter in a message object automatically triggers a robot response.
Instead, a programmer may want to edit multiple objects first before having
the robot react. This occurs frequently at the early programming stage, when
changes to the patch take place on a structural level. One solution would be
to provide programmers mechanisms for toggling between live and offline
states.

Creative and educational applications of live
programming

The majority of industrial robots today are still found on the factory floor
performing tasks that are repetitive and predictable. For operators of these
machines, live programming offers no significant advantages over standard
online or offline approaches. The question therefore arises: who are the robot
users that would benefit from adopting a live programming approach?

One such group is comprised of musicians, artists and architects engaged
in robotics. These users are primarily interested in creating unique robotic per-
formances or robotic fabricated artefacts. A less prescriptive mode of human-
robot interaction robot may open up new creative avenues for exploration. For
example, architects could work with material systems such as sand (Gram-
azio, Kohler & Willman, 2014, p. 286-301) or foam (Gramazio, Kohler & Will-
man, 2014, p. 84-99) with unpredictable behaviour. In these cases, some form
of human decision-making or correction during the physical process is desir-
able. The staging of performances (Bory, 2009) involving humans and indus-
trial robots is also becoming a subject of artistic interest and inquiry. Through
live programming, artists may mediate performances in response to audience
feedback and thus design more interactive experiences.

Novice robot users constitute a second group. Live programming en-
courages a constructivist mode of learning whereby experimentation with

-173- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

code changes is rewarded by immediate robot responses. The cognitive gap
between looking at code and understanding its effect is reduced (Burckhardt
et al., 2010). This facilitates users in acquiring robotics knowledge and pro-
gramming skills. While teaching the robot what to do, the novice is simultane-
ously learning more about the machine and how better to communicate with
it. More open-ended forms of human-robot interaction may encourage new
types of users to engage in robotics; and consequently prompt the migration
of these machines from their traditional industrial setting to everyday work-
places.

Acknowledgements

This work was established at the Singapore-ETH Centre for Global Envi-
ronment Sustainability (SEC), co-funded by the Singapore National Research
Foundation (NRF) and ETH Zurich. I would like to thank the following peo-
ple for their help: Professor Fabio Gramazio (ETH Zurich) for discussing with
me the topic of live programming in relation to robotic fabrication; Associ-
ate Professor Steven Miller (National University of Singapore) for his lessons
on Max/MSP; and former students: Martin Tessarz, Sebastian Ernst, Silvan
Strohbach and Sven Rickhoff for introducing the robotic folding process; and
Chiang Pun Hon for building the robot gripper and clamp that was used in
the case study example.

References

Biggs, G.M., & MacDonald, B. (2003). A survey of robot programming systems. In
 J.Roberts & G. Wyed (Eds), Proceedings of the 2003 Australasian Conference on
 Robotics and Automation (CSIRO). Brisbane. Retrieved from http://www.araa.
 asn.au/acra/acra2003/papers/27.pdf

Bökesoy, S., & Adler, P. (2011). 1city1001vibrations: Development of a interactive
 sound installation with robotic instrument performance. In A.R. Jensenius,
 A. Tveit, R.I. Godøy & D. Overholt (Eds.), Proceedings of the International Con-
 ference on New Interfaces for Musical Expression (pp. 52-55). Oslo: University of
 Oslo and Norwegian Academy of Music.

Bory, A. (2009). Compagnie 111: Sans objet. Retrieved from http://www.cie111.com/

-174- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

en/111/performances/creations/sans-objet (25.6.2012).

Burckhardt, S., Fahndrich, M., de Halleux, P., Kato, J., McDirmid, S., Moskal, M. & Till-
 mann, N. (2013). It’s alive! Continuous feedback in UI programming. In H.J.
 Boehm & C. Flanagan (Eds), Proceedings of the 34th ACM SIGPLAN conference
 on Programming language design and implementation (pp. 95-104). New York,
 NY: ACM New York.

Diaz, F. (2012). Outside itself: Interactive insallation assembled by robotic machines
 untouched by human hands. In S. Brell-Cokcan & J. Braumann (Eds),
 ROB|ARCH Robotic fabrication in architecture, art, and design (pp. 180-183). Vi-
 enna: Springer Wien New York.

Ge Wang. (2010). The ChucK audio programming language: A strongly-timed and on-the-
	 fly	Environ/mentality	(Doctoral dissertation). Princeton University. Retrieved
 from https://ccrma.stanford.edu/~ge/thesis.html

Gramazio, F., & Kohler, M. (2008). Digital materiality in architecture. Baden: Lars Müller
 Publishers.

Gramazio, F., Kohler, M., & Willman, J. (2014). The robotic touch: How robots change ar-
 chitecture. Zurich: Park Books AG.

Hancock, C. M. (2003). Real-time programming and the big ideas of computational literacy
 (Doctoral dissertation). Massachusetts Institute of Technology. Retrieved
 from http://llk.media.mit.edu/papers/ch-phd.pdf

Lim, J., Gramazio, F., & Kohler, M. (2013). A software environment for designing
 through robotic fabrication. In R. Stouffs, P. Jansen, S. Roudavski & B. Tuncer
 (Eds), Open systems: Proceedings of the 18th International Conference on Comput-
 er-Aided Architectural Design Research in Asia (pp. 45-54). Singapore: National
 University of Singapore.

McCarthy, J. (2002). Rethinking the computer music language: Supercollider. Com-
 puter Music Journal, 26(4), 61-68.

Goodfellow, P., Journal of Professional Communication 3(2):x-x, 201x

Puckette, M. (1996). Pure data. In Proceedings of International Computer Music Confer-
 ence (pp. 37-41). Ann Arbor, MI: MPublishing University of Michigan Library.

Puckette, M. (2002). Max at seventeen. Computer Music Journal, 26(4), 31-43.

-175- jpc.mcmaster.ca

Lim, J., Journal of Professional Communication 3(2):165-175, 2014

Sorensen, A. & Gardner, H. (2010). Programming with time: cyber-physical program-
 ming with impromptu. In W.R. Cook, S. Clarke, M. Rinard, K.J. Sullivan &
 D.H. Steinberg (Eds), Proceedings of the ACM international conference on Object
 oriented programming systems languages and applications (pp. 822-834). New
 York: ACM New York.

Turkle, S. & Papert, S. (1992). Epistemological pluralism and the revaluation of the
 concrete. In I. Harel & S. Papert (Eds), Constructionism (pp. 161-191). Nor-
 wood, NJ: Ablex Publishing Corporation.

