
The propositional logic of
Principia Mathematica and
some of its forerunners
by Daniel J. O'Leary

I. Introduction
Principia Mathematica, a monumental work in the foundations of mathematics

and the development of logic, has been the subject of much discussion and the
genesis of many valuable mathematical results. This paper describes an examination
of some of the demonstrations in Part I. Section A, the part dealing with proposi
tionallogic. This part of Principia Mathematica can be traced to works of Peano and
Frege through some earlier work of Russell.

I am interested in this part of Principia Mathematica for a number of reasons.
The preface states: "The proofs of Part I, Section A, however, are necessary [for
the reader's understanding], since in the course of them the manner of stating proofs
is explained. The proofs of the earliest propositions are given without the omission
of any step, but as the work proceeds the proofs are gradually compressed, retaining
however sufficient detail to enable the reader by the help of the references to recon
struct proofs in which no step is omitted." [33, p. vi] The claim of reconstructing
the proofs from the compressed versions is interesting. This paper will outline my
attempts to complete the reconstruction and will examine some of the difficulties
encountered.

A second reason for looking at this part of Principia Mathematica lies in the fun
damental changes in the subject of logic. This aspect of logic has diminished in
importance in recent years as new advances are made in logic. Many results of prop
ositionallogic are still exciting and beautiful. We may now look back upon some of
this work from an interesting position; we have answers to questions which vexed
Russell, Peano, Frege, and others. For example Russell wrote to Frege on 12
December 1904 and offered a set of axioms. He says, "I chose these instead of others
because it seemed to me that their number would be the smallest adequate number."
[4] The problem of the smallest adequate number 'of primitive propositions was later
solved by Paul Bernays [I] in the context of Principia Mathematica. He also showed
that one of the axioms of Principia Mathematica is redundant.
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2. Before and after Principia Mathematica
One source which would have answered all questions is, of course, Russell. I

imagine that he worked out all the demonstrations in detail and then condensed
them to the current abbreviated form. At the least he must have had a sketch for
the complete demonstration. Presumably the next step would be to send them to
Whitehead for comments. For a discussion of this process see Douglas Lackey's
"The Whitehead Correspondence" [10]. In any case neither Russell's working
papers nor the letters to and responses from Whitehead concerning Part I, Section
A are in the Russell Archives. There is however a letter from Whitehead to Russell
which indicates that, in an early draft of Part I, Section A, the demonstrations had
not been written out in sufficient detail. Whitehead says, "Everything, even the
object of the book, has been sacrificed to making the proofs look short and neat. It
is essential, especially in the early parts that the proofs be written out fully-"
(emphasis in original). This letter [31] had been later dated by Russell and a types
cript [32]"prepared. On the bottom of the letter Russell has written, "Whitehead's
criticism of *1-*5 of Principia Mathematica". On the bottom of the typescript Rus
sell wrote, "A criticism of my first draft of the Logic of Propositions for the begin
ning of Principia Mathematica. Whitehead was entirely right." Russell assigned a
date of 1902. The manuscript to which this letter refers is not extant.

In his autobiography Russell mentions this letter in connection with his work on
symbolic logic. He says ([26], I: 227):

[I] devoted myself to the mathematical elaboration which was to become Principia Mathe
matica. By this time I had secured Whitehead's co-operation in this task, but the unreal,
insecure, and ~entimental frame of mind into which I hact allowed myself to fall affected
even my mathematical work. I remember sending Whitehead a draft of the beginning, and
his reply: "Everything, even the object of the bookl has been sacrificed to making proofs
look short and neat." This defect in my work was due to a moral defect in my state of mind.

The troubled mental state here refers to Russell's sudden realization that he no
longer loves his first wife, Alys. They continued to live together for many years,
but Russell indicates that it was a bad experience for both of them.

This early work was also mentioned in a letter to Frege which Russell wrote on
24 May 1903, a year and a day after completing The Principles ofMathematics [4].
This is an excited letter announcing that "I believe I have discovered that classes
are entirely superfluous." Russell concludes the letter by stating:

In the first two parts of my book [Principles of Mathematics] there are many things which
I did not discuss thoroughly, and many opinions which no longer seem to me correct. But
in the later parts most things seem to me correct, provided classes are replaced by functions.
In the second volume I hope to work out everything in symbols.

In 1906 Russell's paper "The Theory of Implication" appears [20]. This work, a
forerunner to the symbolic logic of Principia Mathematica, contains a different log
ical system but all the essential features of Principia Mathematica. The letter from
Whitehead to Russell must have been written before the "Theory of Implications" .
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Russell sent the manuscript to Frank Morley, the editor of The American Journal
ofMathematics, on 23 July 1905 [19]·

After the appearance of the first edition Russell and Wittgenstein discussed Prin
cipia Mathematica and Wittgenstein criticized it. Kenneth Blackwell [2] reports that
in late summer of 1913 there was a plan to rewrite the first volume with Wittgenstein
reworking the first eleven chapters. I presume that would be Part I, Sections A and
B, propositional logic and quantifiers. In a letter to Lady Ottoline Morrell, dated
23 February 1913 and quoted by Blackwell, Russell told her "Wittgenstein has per
suaded me that the early proofs of Principia Mathematica are very inexact."

The second edition of Principia Mathematica did appear but Part I, Section A was
not influenced by any criticisms offered by Wittgenstein. This is easily seen by a
proposition by proposition comparison of the two editions. The type for the second
edition was reset and a few typographical errors were corrected. By the time of the
second edition, however, Russell would have abandoned this part in favour of the
new one-axiom method of Nicod [14] using the one primitive idea of Sheffer [28].
These new ideas were not incorporated into the second edition since that would
have meant rewriting many of the later proofs to incorporate new references.

3. Construction of the proofs
The analysis presented here is based on the second edition because of its avail

ability. The nrst and second editions are mathematically the same. Part I, Section
A is titled "The Theory of Deduction" and is divided into five chapters numbered
*1 to *5. The first of these contains primitive ideas. As a starting-point negation
and disjunction are taken as primitive propositions and implication is defined in
terms of them. Next comes a list of ten primitive propositions. A modern view
would divide these into three groups: those which describe well formed formulas
(*1'7, *1'71, and *1·72), those which provide axioms for the system (*1·2 to *1'6),
and those which act as inference rules (* 1-1 and *1-11). I wish to treat Part I, Section
A as a formal system starting with a set of axioms and inference rules and proceeding
with a series of proofs in which each line is a consequence of one or more preceding
lines.

To help in constructing the proofs I used a digital computer at the University of
Maine. I wrote a computer programme, in the language SNOBOL4 [7], which accepts
an outline of a proof, applies the indicated inference rules, and writes out the proof
in full. This is a particularly valuable technique since it reduces the drudgery and
'increases the accuracy of the work. The most valuable assistance comes with the
substitution rule (described below) for some of the resultant expressions may have
fifty to sixty symbols.

The demonstrations of Principia Mathematica were translated to a form based
upon that in Elements of Mathematical Logic by Jan Lukasiewicz [13]. The propo
sitions were rewritten in Polish notation. This has the advantage of not requiring
special characters on the keyboard, all the symbols necessary being found on a
standard typewriter keyboard. The demonstrations were also rewritten in a form
which is not unlike the proof format used by Lukasiewicz. The structure of the
demonstrations seems to be particularly amenable to this format.

The digital computer method has another advantage. It does not make assump
tions. One must tell the programme exactly what to do. The symbols must match
character for character or the programme indicates an error. For example, a con-
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junction must have the conjuncts in the proper order if it is to be used as the ante
cedent in an application of modus ponens. This method has a curious feature for
which I must apologize to Russell. In My Philosophical Development ([25], p. IIo),
he criticizes the formalists, led by Hilbert, for maintaining that "arithmetical sym
bols are merely marks on paper, devoid of meaning, and that arithmetic consists of
certain arbitrary rules, like the rules of chess, by which the marks can be manip
ulated." This is the "point of view" taken by my computer programme; the symbols
are merely electronic marks to be manipulated by certain rules built into the pro~
gramme and invoked by the outline of the proof provided. My computer programme
does not find a proof but constructs one by following an explicit set of directions.
In mitigation I quote Warren Goldfarb [5]:

The upshot of formalization, for Frege and Russell, is thus somewhat more limited than
we might suppose: They wish to render mathematics in such a way that all principles used
in mathematical argumentation are explicit. Formalization enables us to do this: by precise
transformation rules we see exactly what each step depends upon. The precision, and the
possibility of checking formal proofs without knowing what the formulas mean, is essential
only for the purpose of insuring that we have not let any principle be used without due
notice. But this is not to say that in the end we take the precise rules as uninterpreted.

4· Part I, Section A as a formal system

To view Part I, Section A of Principia Mathematica as a formal system one must
present (at least) a set of axioms and a set of inference rules. In this case it is best
to precede these by an enumeration of the primitive ideas and definitions. Section
A is based upon two primitive ideas, negation and disjunction. (The second edition
would have these reduced to one, incompatibility.) From these two connectives the
other three connectives used, implication, .conjunction, and equivalence, are
defined. There is also a set of rules which tell us how to build (or to check) prop
ositions from constituents. These are given only in terms of the two primitive con
nectives, since any proposition may, by application of the definitions, be rewritten
using just these two primitive connectives. The definitions used are:

*1·01 p-:Jq. = ."'pvq Df,

*3'01 p.q. = ."'("'pv "'q) Df,
*4'01 p=q. = .p-:Jq.q-:Jp Df.

Note that *4·01 is riot defined in terms of the primitive connectives, but rather
in terms of connectives which had already been defined. The four connectives nega
tion, disjunction, conjunction, and implication hold a special place as fundamental
functions in Principia Mathematica, a place not shared by equivalence. In the intro
duction to Principia Mathematica ([33], I: 7) one finds that:

These four functions of propositions are the fundamental constant (Le. definite) proposi
tional functions with propositions as arguments, and all other constant propositional functions
with propositions as arguments, so far as they are required in the present work, are formed
out of them by successive steps.... The simplest example of the formation of a more complex
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function of propositions by the use of these four fundamental forms is furnished by

"equivalence."

Russell holds that definitions are volitional; they may be eliminated in favour of
the definiens. Most of us would be reluctant to proceed without the definitions noted
above. There is another set of definitions for which most orus would not feel quite
a strong need. These have more the flavour of a short notation than the "seemingly"
more fundamental definitions given above. This class of definitions serve "only for
the avoidance of brackets." These definitions are:

*2-33 pvqvr. = .(pvq)vr Df,
*3.02 p=>q=>r. = .p=>q.q=>r Df,
*4.02 p=q=r. = .p=q.q=r Df,
*4·34 p.q.r. = .(p.q).r Df.

The next item to present in the formal system is the set of axioms. These are

given as:

*1·2 r:pVp.=>,p Pp,
*1-3 r:q.=>.pvq Pp,
*1·4 r:pvq.=>.qvp Pp,
*1·5 r:pV(qvr).=>.qv(pvr) Pp,
*1·6 r:.q=>r.=>:pvq.=>.pvr Pp.

As noted above Bernays showed that *1·5 may be derived from the others. Emil
Post [15] showed that this axiom set is sufficient (with an appropriate set of inference

rules) to derive all tautologies.
We must now turn our attention to the inference rules. This is the area which has

caused the most difficulty in my analysis. Russell is clear about what constitutes an
inference. In Principles ofMathematics ([18], p. 17) he says that "all our axioms are
principles of deduction...." Since Russell is here arguing from a logicism position
he cannot go outside the system of logic; logic is all that there is. Thus the axioms
serve both as starting places in derivations and as potential rules of passage from
one line in a demonstration to another. This view is confirmed in Introduction to
Mathematical Philosophy ([23], p. 149):

these [axioms] are the formal principles of deduction employed in Principia Malhemalica.
A formal principle of deduction has a double use.... It has the use as the premiss of an
inference, and a use as establishing the fact that the premiss implies the conclusion. In the
schema of an inference we have a proposition p, and a proposition "p implies q," from which
we infer q. Now when we are conce~ned with the principle,s of deduction, our apparatus of
primitive propositions has to yield both the p and the "p implies q" of our inferences. That
is to say, our rules of deduction are to be used, not only as rules which is their use in estab

lishing "p implies q," but also as substantive premisses, i.e. as the p of our schema.

In my work I have found eight inference rules in use in this part of Principia
Mathematica. Some of the rules are given explicitly and some must be developed
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by a study of the demonstrations. The rules given here are those used in the passage
from one proposition to another. The rules which describe well-formed propositions
are not included here.

A distinction must be made between primitive inference rules and derived infer
ence rules. It is a situation not unlike that involving axioms and propositions in a
formalist view. Certain inference rules are taken as primitive; other inference rules
may be used, but one must show that these rules are derivable in reference to the
system under consideration.

Some of the rules given here have more than one form. These different forms
haven't been counted separately in the eight rules. Table 4. I summarizes the rules
and indicates the demonstration which contains the first use of each rule.
4. I The first rule which I shall describe is modusponens. In doing so I wish to
skirt any discussion of formal and material implication. I found three forms of modus
ponens: the conventional form with implication and two involving equivalence as
the major binary connective.

The conventional form is established by *1·11. I will paraphrase it here as "From
'r. P and 'r. p::J Q infer f-. Q." Here and below P, Q, etc. will refer to arbitrary
(well-formed) propositions.

The second form involves equivalence. It may be paraphrased as "From 'r •P and
'r •P """ Q infer f- •Q."

The third form also involves equivalence, but goes the other way. This may be
paraphrased as "From f-. Q and 'r.P """ Q infer 'r .p''' These two forms are curious
in that they are used in their own right. One could have reduced an equivalence to
a conjunction of implications (by definition *4·01) and then written each conjunct
on a proof line. This method is not used. In "fact it appears that reducing a con- '
junction to its conjuncts is not used at all in this section of Principia Mathematica.

The use of the second and third form is anticipated by the Introduction, but these
forms are never given as formal rules. In the Introduction ([33], I: 7) we find,
"Equivalence rises in the scale of importance when we come to 'formal implication'
and thus to 'formal equivalence'.... Equivalence in its origin is merely mutual
implication...."
4.2 The next rule to consider is substitution. Well-formed formulas may be sub
stituted for the sentential variables in a proposition when the substitutions are uni
form and simultaneous. By uniform I mean that each occurrence of a sentential
variable must have the same well-formed formula substituted for it. By simulta
neous I mean that all substitutions for sentential variables must be done at the same
time.

In Introduction to Mathematical Philosophy ([23], p. I5In.) Russell points out the
necessity for this rule. Alonzo Church, in Introduction to Mathematical Logic ([3], p.
32), attributes an explicit statement of the rule of substitution to C.1. Lewis in A
Survey of Symbolic Logic [12].

Russell clearly understood the rule and even gives an example of its use on page
94 of Principia Mathematica. At various places in the demonstrations necessary sub
stitutions are indicated. The indications are not always given; but when given they
are complete and correct. In general more indications are given earlier than later,
so this is part of the process of compressing the proofs.
4.3 The rule of replacement has two forms. Neither form is given explicitly, but
both are used extensively in the work.
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This rule allows the use of definitions. As actually used in practice it allows a
little more. Stating both forms at once we get: The definiens (definiendum) of a def
inition or the result of a simultaneous and uniform substitution in a definition may
be replaced by the definiendum (definiens). Thus, not only maya definition be used
but any. substitution instance of a definition is also allowed. This later form is not
mentioned in any examples but is used throughout Section A.
4.4 The rule of replacement, above, dealt with definitions. There is a similar rule
which deals with propositions in which the major connective is an equivalence. The
rule has two forms, one dealing with equivalence and one dealing with mutual impli
cation. The two forms are necessary because the rule is needed early in Section A,
but equivalence is not defined until near the end (of Part 1, Section A). The two
forms of the rule are: (a) If some previously proved proposition is of the form p::J Q
and some previously proved proposition or substitution instance of a previously
proved proposition is of the form Q::J P, then an occurrence of P in some propo
sition may be replaced by Q. (b) If some previously proved proposition or substi
tution instance of·a previously proved proposition is of the form P == Q, then an
OCcurrence of P in some proposition may be replaced by Q and vice versa.'

The demonstrations never explicitly mention the use of this rule, it must be
inferred from the various lines as they are constructed. The primary purpose of this

. rule is in implementing associativity and commutativity and in removing double
negations.

This is not a primitive rule. Hilbert and Ackermann ([8], p. 33) provide a proof
which may be applied to Principia Mathematica. The proof requires proposition
*2·16.b\lt the first use of this rule is not made until *2·38.

This rule is anticipated in the Introduction to Principia Mathematica in a discus
sion of truth-values ([33], 1: 8): .

[Ilt is easy to see (though it cannot be formally proved except in each particular case) that
ira proposition p occurs in any proposition f(p) which we shall ever have occasion to deal
with, the truth value of f(p) will depend, not upon the particular proposition p, but only
upon its trUth value; i.e. if p == q, we shall have f(p) == f(q). Thus whenever two propositions
are known to be equivalent, either may be substituted for the other in any formula with

which we shall have occasion to deal.

4.5' In Principia Mathematica some.of the derived rules are proved. Two such rules
are proved in Section 1, Part A. Both proofs require an assumption, so we need a
rUle which allows us to place an assumption on a proof line. This rule is only used
in the proof of inference niles,' not in the demonstrations of propositions.
4.6 The fust derived inference rule proved is *3·03. This rule allow one to assert
the cOnjunction of two asserted propositions.
4.7 1n smile cases the demonstrations of Principia Mathematica require a propo

. sinon with implication as the major connective, but the form proved actually has
equivaIence as the major connective. For example the demonstration of *5·15
reqUires the proposition

rv(p:Jq). => .p.rvq

'bit obtamed from *4·61 which is
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rv(p=>q).==.p.rvq.

The rule here is similar to the form of modus ponens involving equivalence in that
this rule is used in its own right. There is no mediating use of a rule which allows
one to assert each conjunct of a conjunction.
4.8 Section 1, Part A has proofs of two derived rules. The first proof is in a num
bered demonstration, *3'03, but the second is in a note following *4·3. This rule
has only two uses, in the demonstrations of *4·3 and *4·31. It is used to show that
if an implication can be proved showing that some two-place connective commutes, .
then the implication may be replaced by an equivalence. . .

Table 4.1
Summary of Inference Rules Used in Section I,

Part A of Principia Mathematica

Rule Type First Use .
Modus Ponens

Conventional Primitive *2·04
Equivalence Derived *4·32
Equivalence Derived *H5

Substitution Primitive *i'OI .
Replacement Primitive *2'01
Replacement of Equivalents Derived *2-38 .

Assumption - *3·03
Conjunction Introduction Derived *3~47

Changing Equivalence to
Implication Derived *H5

Equivalence of Commutative
Connectives Derived *4·3

5. An examination of some demonstrations
In examining the demonstrations of Section A a number of problems were..

encountered. From most demonstrations one may easily reconstruct the proof, othet
demonstrations are difficult, some seem impossible. ' . . .

To claim that a demonstration doesn't go through is not to claimJhai: the ·ass~..
ciated proposition is false, but merely that the demonstrati,on in question is not
adequate to show the desired proposition. If required a proPosition may be showt.
by showing that it is a tautology. This is, however, a modern vi~w of logic, a'View
which states that truth lies in an interpretation. Interpretation is Ii inetatheoteuc'
concept (and so outside the formal system) and has no place' in P;ttzdplo
Mathematica. '

The concept of interpretation is, however, very importailt t~ my work. Ifa ·detit~ ,
onstration fails the proposition asserted is suspCct. Suspicion may be, removed by
showing (by truth-tables methods) that the pro~itionisl\ taui:~lo.lY. It is how



100 Daniel J. O'Leary

known that all tautologies, and only tautologies, may be derived in this formal

system.
As mentioned above the second edition was used. There are a few typographical

errors which I will indicate. In *2·32 the first and second lines of the demonstrations
should each end with a dot. In *4·72 a horizontal bar is missing from the

substitution.
5.

1
Prior to the demonstration of *2·31 an abbreviation used in some of the sub-

sequent demonstrations is introduced. Some understanding of this abbreviation is
necessary to understand a problem which is discussed below. Moreover, this abbre
viation creates some problems of its own. A series of propositions of the form a:::> b,
b:::> c, c:::> d, all asserted, may be used to assert a:::> d. The detailed scheme for this

is given as ([331, I: 104):

This proposition and *2·32 together constitute the associative law for logical addition of
propositions. In the proof, the following abbreviation (constantly used hereafter) wil\ be
employed*: When we have a series of propositions of the form a:J b, b:J c, c:J d, all
asserted, and "a:J d" is the proposition to be proved, the proof in full is as follows:
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to the intentions of Russell and Whitehead. Principia Mathematica makes a dis
tinction between the use of a proposition as a rule of inference and as an ordinary
line in a proof. The use as a rule of inference is indicated by enclosing the name or
number of the proposition in square brackets. The use as an ordinary linein a proof
is indicated by the assertion sign, 1-. thus the notation for a sorites,

[SyllJ 1-. (a). (b). (c).:J 1-. (d),

indicates the use of Syll as an inference rule. How should this be taken: to mean
repeated applications of Syll or a "super-Syll" which allows a sorites of any length?

The convention of enclosing rules in square brackets is violated by the first abbre- .
viation discussed above. In the full form the only rule of inference used is modus
ponens. Syll is used as a line in the deduction not as an inference rule. When the
abbreviation is introduced, the references to Syll are deleted. The propositions
required in lines (2), (4), and (8) have their names or numbers enclosed in square
brackets, but they too are just lines in the demonstration.

In any case, the distinction is blurred for all demonstrations from *2·4 onward.
We find ([33], I: 106):

where a :::> d is the desired result.
This provides an extension of the syllogism to prove a sorites of any length. This

is the second, but more common, way in which this process is abbreviated. Follow
ing the demonstration of *2·15 there is a note which indicates that such proofs may

also be indicated as

[Syl1] 1-. (a). (b). (c).:J 1-. (d).

These two combine to raise the question of the status of such abbreviations as infer
ence rules. Should one consider these as new inference rules or as compressions of
the proofs? I have taken the later view, and present the proofs as the expanded

version noted above.
While this facilitates the analysis which I wish to perform I wonder if it is true

where Syll means *2·06. In general the process is abbreviated as

This demonstration contains three component parts. The first part is the first line,
the second part is the next three lines, and the third part is the last two lines. Notice

(2)

(1)

*2'85 I- :.pvq.:J .pvr::J:p. v .q:Jr
Dem.

[Add.Syl1] 1-:.pvq.::J.r::J.q:Jr
1-.*2·55.::JI-::"'p. :J:.pvr.:J.r:.
[Syll] :J :.pvq.:J .pvr::J :pvq.::J .r:.
[(1).*2-83] :J:.pvq.:J.pvr::J:q:Jr
1-. (2) .Comm.:J 1-:. pvq.::J .pvr::J :"'p.:J .q:J r:
[*2·54] ::J:p.v.q:Jr:.:JI-.Prop

[W]hen a general rule is adduced in drawing an inference, as when we write
"[Syll]I- . (1). (2). :J I- . Prop," the mention of "Syll" is only required to remind the reader
how the inference is drawn. The rule of inference may, however, also occur as one of the
ordinary premisses, that is to say, in the case of "Syll" for example, the proposition
"p :J q • :J : q :J r. ::J .P:J r" may be one of those which our rules of deduction are applied,
and it is then an ordinary premiss. The distinction between the two uses of principles of
deduction is of some philosophical importance, and in the above proofs we have indicated
it by putting the rule of inference in square brackets. It is, however, practical1y inconvenient
to continue to distinguish in the manner of reference. We shall therefore henceforth both
adduce ordinary premisses in square brackets where convenient, and adduce rules of infer
ence, along with other propositions, in asserted premisses, Le. we shall write e.g.
"1-(1). (2). Syl1. :J 1-. Prop" rather than "[Syl1] 1-. (1). (2). ::J 1-. Prop"

5.2 The first demonstration to discuss in detail is *2·85 which is reproduced below.
I will also use it as an example of how the demonstrations may be read. Recall that
the demonstrations are compressed as the work progresses.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

l-:a.:J. b.
[etc.]:J. c.
[etc.p.d

I- :. a:J b. :J : b:J c. :J . a:J c

l-:a.:J. b
l-:b:Jc.:J.a:Jc

1-: b.:J. c
I-:a. :Jc
I- :. a:J c. :J : c:J d. :J . a:J d

l-:c:Jd.:J .a:Jd

l-:c.:J .d
I- :a.:J.d[(7). (8). *1'11]

[(3).(4),*1-11]
[Syl1]
[(5). (6). *1-11]

[(1).(2).*1-11]

[Syll]
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that each part ends with either a number or "Prop". Each one of these parts could
have been ad,emonstration in its own right. They are combined here for the con-.
venience of the authors, since the intermediate propositions are not required for
use in any other demonstration.

Certain propositions have names, a practice carried over from Peano. Part I, Sec
tion A is the only place in Principia Malhemalica where names are assigned. Thus
.the first part of this demonstration tells us to combine the propositions named Add
and Syll in some way to yield the proposition

\- :pvq. :=J.r::=J .q:=Jr

and call it (1) for further use.
Generally such a notation calls for substitutions in the named propositions fol

lowed by modus ponens to get the desired result. Principia Malhemalica contains a
table entitled "Alphabetical List of Propositions Referred to by Names". In this
table one may find the following entries:

Add *1-3 \-:q.:=J.pvq

Syll *2·05 \-:.q:=Jr.:=J:p:=Jq.:=J.p:=Jr

Syll *2·06 \-:.p:=Jq.:=J:q:=Jr.:=J.p:=Jr.

Here no substitutions are required in *1·3. One must use *2·06 with q substituted
for p and p::> q substituted for q. (The substitutions must be uniform and simul
taneous.) The result from *2·06 is
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demonstration proceeds without difficulty. The required line is a tautol9GY, so may·
be proved, thus the demonstration could be made to succeed. I suspect that the
error lies in (1), that the wrong proposition was proved but there does not seem to
be a way to know. Neither *2·85 nor (1) appear in any of the forerunners to be
discussed below.

5·3 The next point of difficulty is in *3·47. The demonstration does not work as
written. This is particularly interesting because it is the first place where *3,03, the
rule which allows conjunctions of asserted propositions, is called for.

The demonstration, reproduced below, is in three parts.

*3'47 \-:.p:=Jr.q:=Js.:=J:p.q.:=J.r.s

This proposition, or rather its analogue for classes, was proved by Leibniz, and evidently
pleased him, since he calls it "praeclarum theorema."

Dem.

\-. *3·26.:=J \- :.p:=Jr.q:=Js.:=J:p :=Jr:

[Fact] :=J :p.q.:=J .r.q:

[*3-22] :=J:p.q.:=J.q.r.
\-. *3·27.:=J \- :.p:,)r.q:=Js.:=J :q:=Js:

[Fact] :=J :q. r. :=J. s. r:
[*3'22] :=J : q . r. :=J . r. s
\- . (1). (2). *3·03. *2-83 • :=J

\- :.p:=Jr.q:=Js.:=J:p.q.:=J.r .s:.:=J \-. Prop

The first and second parts prove

\- :: q • :=J .Pv q : :=J :. p V q • :=J .r: :=J :q :=J r.
and

\- :·P:=J r .q:=Js.:=J :p.q.:=J .q.r

(1)

(2)

The antecedent here is (eqwform with) *1·3, modus ponens may be applied, and
the desired result obtained. This is a common practice in the demonstrations.

The next part of the demonstration is meant to yield (2) which is

\- ::rvp.:=J :.pvq.:=J .pvr::=J :q:=Jr.

The use of this type of demonstration was discussed above. Notice here the call for
the intermediate step [(1). *2·83]. As explained previously the demonstration
requires

\- ::pvq.:=J pvr::=J :pvq.:=J .r:.:=J :.pvq .pvr::=J :q:=J r

at this point. This proposition is a tautology, so is provable, but it cannot be proved
by (1) and *2·83. In this context one does not expect to make substitutions in (1).
The substitution of pv q.::> r for pin *2·83 will provide the correct antecedent, i.e
(1), but the wrong consequent. The substitution of p v q . ::> •p Vr for p, p v q for r,
and r for s in *2·83 will produce the correct const:quent but not the wrrect
antecedent.

It is not clear how the demonstration is to go, short of recognizing that this is
simply an error. If the required line is supplied (2) is produced and the rest of the

\- :. p:=J r. q:=J s. :=J :q. r. :=J . r. s

respectively. The third part, 1-(1). (2). *3'03. *2'83, indicates that one should form
the conjunction of (1) and (2) using the rule *3'03, make a substitution in *2.83 for
which the conjunction is the antecedent, apply modus ponens, and get the propo
sition. No such substitution will work.

Moreover, on page IIO of the second edition (page II5 of the first edition), this
demonstration is cited as an example of the use of the conjunction rule. The descrip
tion has a different third part for the demonstration, one which uses *3·43 and *3'33,
but never mentions *2.83:

As an example of the use of this proposition, take the proof of *3'47. We there prove
I- :.p:=Jr.q:=Js.:=J :p.q.:=J .q.r

and 1-:.p:=Jr.q:=Js.:=J :q.r.:=J .r.s
and what we wish to prove is

p:=Jr.q.:=Js.:=J :p.q.:=J. r.s,

which is *3'47. Now in (1) and (2), p, q, r, s are elementary propositions (as everywhere in
Section A); hence by *1·7'71, applied repeatedly "p:=Jr.q:=Js.:=J:p.q.:=J.q.r" and

"P:=J r. q:=J s. :=J : q. r. :=J . r. s" are elementary propositional functions. Hence by *3'03, we
have
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I- ::p~ r.q~s. ~:p.q. ~.q .r:.p ~r.q~s.~:q. r. ~. r.s,

whence the result follows by *3·43 and *3·33.

This version can be made to work if a syllogism is applied. This is basically the
question discussed as to whether or not a syllogism should count as a derived rule.

The more .interesting aspect of this problem is an attempt to reconstruct the dem
onstration as given. This can also be made to work, but requires that the reference
to *3·03 be deleted.

One commentator on Principia Mathematica is J0rgen J0rgensen in Introduction
to Mathematical Logic. He expands some of the demonstrations and examines this
one ([9], I: 237). He follows the demonstration (not the note on page 110 of Principia
Mathematica) and indicates that the conjunction of (I) and (2) is to formed, but he
never indicates a use for the conjunction in the demonstration.

The demonstration of *3·48 is analogous to the version of *3·47 which does not
use the conjunction rule.
5.4 The statement of *4·87 is not well formed. This proposition combines the
principles of exportation, importation, and the commutative principle by showing
that they are equivalent. This is indicated by using three equivalence signs of equal
status. Recall that *4·02 (p == q == r. = • p == q •q == r Df) is a definition which shows
how two equivalence signs may be combined by the use of conjunction, but it is
not clear how three equivalence signs are to be combined.

I should remark here that I haven't been able to reconstruct all the proofs. Some
still remain a mystery to me. I haven't mentioned all the problems encountered in
Part I, Section A, just some of the more interesting ones.

6. A troublesome "rule" of inference
The most serious difficulty is the seeming use of a false rule of inference. The

problem is easily shown by an example. Consider the demonstration of *4·32:
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from which the desired result seems to follow by changing the symbols for equiv
alence to symbols for implication. Such a rule holds in case the equivalence is the
primary connective (as explained above), but not generally for other instances of
equivalence. Consider, for example,

*4·21 I-:p==q.==.q==p.

An application of the "rule" provides

p~q.=.q~p

which fails to be a tautology when p is true and q is false.

7. A rule which was not used

It is well known that Russell was greatly influenced by Peano as a result of their
meeting at the International Congress of Philosophy in Paris, 1900. Russell reports
that he read much of the material w!lich Peano and other members of his school
had written. In The Collected Papers ofBertrand Russell, Volume I, one finds ([27],
p. 345), "From February 1891 to March 1902 Russell kept a monthly list of books,
partial books and some individual papers which he read during that time. This list,
which totals 785 entries, bears the printed title 'WhatShall I Read?' and is subtitled
'A Record of Books Read and to Be Read'." From this record we know that Russell
read Peano's Formulaire de mathematiques, 1, II.

Russell adopted many ideas from Peano including the basic techniques of proof
in symbolic logic. The structure of the demonstrations in Principia Mathematica is
similar to those presented by Peano in his early work.

An idea which Resell did not adopt from Peano is the deduction theorem which
was used extensively by Peano. For example in Formulaire de mathematiques, I, Sec
tion 1 [16] a demonstration is given as

Peano used a, b, and c where Russell used p, q, and rand = where Russell used
==. Here Hp means the hypothesis of the proposition to be proved, a = b. b:::> c.
From this one may get a:::> b. b:::> a. b:::> c, from which a:::> c follows by eliminating
conjuncts. The proposition follows from the deduction theorem. It was later shown
to be a valid rule of inference in Principia Mathematica by Jacques Herbrand.

This rule is not used by Russell in either "The Theory of Implication" or Prin
cipia Mathematica. The abbreviation "Hp" does appear in *5·71 and *5·75 of Prin
cipia Mathematica, but it has a different use.

*4·321-:(p.q).r.==.p.(q.r)

Dem.
r.*4·15. ~I-:.p.q.~."-r: ==:q.r.~.",p:

[*4'12] ==:p.~."'(q.r) (1)

1-.(1).*4'11. ~I-:"'(p.q.~."'r).==."'{p.~."'(q.r)}:

[(*1-01. *3'OI)P 1-. Prop
Note. Here (1) stands for "I- :.p.q. ~ ."'r: ==:p. ~ ."'(q. r)," which is obtained from the

above steps by *4'22. The use of *4·22 will often be tacit, as above. The principle is the
same as that explained in respect of implication in *2·31.

The first part, (1), requires

21. a = b.b~c.~.a~c [Hp. ~ .a~b.b~c. ~a~c].

r:. q. r. ~. "'p: == :p. ~ ."'(q. r)

be obtained from *4·12. By substituting q. r for p and p for q in *4·12 one gets

I- :. q. r. == •"'p : == :p. "" . '" (q. r)

8. The theory of implication

"The Theory of Implication" [20], marks an important point in Russell's devel
opment of propositional logic. It contains much of the text which shows up in the
expository part at the beginning of Part I, Section A of Principia Mathematica.
Appendix A contains a detailed comparison of the two versions. The logic system,
however, is not the same.
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The text at the beginning of "The Theory of Implication'" may be matched with
some of the text in,Part I,Section A. The first line of each stands out when the
comparison is made. The first sentence of "The Theory of Implication" is, "The
purpose of the present article is to set forth the first chapter of the deduction of
pure mathematics from its logical foundations." In Principia Mathematica the sen
tence appears on page 90 but the word chapter has been changed to stage. This
article is apparently part of a larger work. In his letter to Morley of 23 July 1905
Russell says, "If you do not feel that it is too much out of your line, I should like
to follow it by a second article proceeding to the theory of classes. For, as it stands,
it is a mere preface." The second article never appeared.

Page 90 of Principia Mathematica contains two long paragraphs. The correspond
ing part of "The Theory of Implication" contains essentially these two paragraphs
with a third one which acknowledges ideas adopted from Peano and Frege. Russell
says, "But although the symbolism is in the main Peano's, the ideas are more those
of Frege.... The plan of taking implication and negation as our primitive ideas is

also his."
This is the primary difference between "The Theory of Implication" and Part I,

Section A of Principia Mathematica' where disjunction and negation are primitive

ideas.
The two ideas of negation, however, do not coincide exactly. In Principia Math-

ematica we find ([33], I: 93], "If P is any proposition, the proposition 'not-p' or 'p
is false' will be represented by ',,-, p'." In "The Theory oflmplication" Russell says
([20], p. 164), "The proposition 'p is not true' is expressed by "-'p. Thus '''-'p' will
be true if p is not a proposition, and if p is a false proposition; it will only be false

if p is a true proposition."
The most interesting part (to me) of "The Theory of Implication" is Russell's

statement of the rule of substitution mentioned above. This rule is not included in
Principia Mathematica but is given explicitly here, with a number of ,examples of
its use. Russell calls this *2·3 and marks it as a primitive proposition. He gives an
example of its use, stating, " ... it is needed for the inference that, since 'p:::> p' is
true for any value of p, it is true if one substitute p :::> q for p, so that 'p:::> q . :::> •p:::> q'
is true for any values of p and q. (The principle is to be extended to two or more
variables.)" Russell had a formulation of the rule of substitution, and chose not to
state it in Principia Mathematica.

The formal system of "The Theory of Implication" is based on seven axioms
, which employ only implication and negation. One of the axioms, *2'5, is redundant.

Jules Vuillemin ([30], p. 38) gives a proof from some of the other axioms.
The inference rules used are similar to those of Principia Mathematica. However,

the rule which allows asserting the conjunction of two asserted propositions does
not appear. The other inference rule which is proved in Part I, Section A, concerning
equivalence with a commutative function, appears in essentially the same forin. It
is relegated to a note here as in Principia Mathematica.

The deduction theorem does not appear here, ~ither. Frege did not use it in his
work and since the ideas here follow Frege (and Principia Mathematica follows the
ideas here),Russell probably did 'not feel a need for it.

In examining "The Theory of Implication" I had hoped to shed some 'light on
some of the demonstrations of Principia Mathematica. Many of the demonstrations
are identical, although the propositions have different numbers. In general "The
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Theory of Implication" gives less information about demonstrations, and in some
cases gives no demonstration at all.

The role of "The Theory of Implication" in the development of Principia Math
ematica is interesting, and worthy of further exploration. Russell describes the work,
in a section headed "d Elementary Properties of Implication and Negation", as
follows:

The propositions that follow are all such as are actually needed in deducing mathematics
from our primitive propositions. I shall omit proofs of some of the less important, and
sometimes only briefly indicate the proofs where they are obvious. But in most cases I shall
give the proofs in full, because the importance of the present subject lies, not in the' prop
ositions themselves, but (1) in the fact that they follow from the primitive propositions, (2)

in the fact that it is the easiest, simplest, and most elementary example of the symbolic
method of dealing with the principles of mathematics generally. Later portions"-the theory
of classes, relations, cardinal numbers, series, ordinal numbers, geometry, etc.-all employ
the same method, but with an increasing complexity in the entities and functions,
considered.

The first part of the paragraph sheds light on why some of the demonstrations
are hard to follow.

9. After "The Theory of Implication"
In the time between "The Theory of Implication" and Principia Mathematica

Russell underwent a shift in perspective concerning the primitive elements of prop
ositional logic. As quoted above he viewed the notation of "The Theory of Impli
cation" as coming from Peanobut the ideas come more from Frege.

In a letter to Frege, dated 12 December 1904 [4], Russell presents some of the
axioms of "The Theory of Implication". He gives a formal definition of negation
(involving the universal quantifier) and a primitive proposition for negation (the
principle of reduction of The Principles ofMathematics). 'At the end of "The Theory
of Implication" ([20], p. 200) Russell explains his idea for a definition of negation
and why he rejected it.

The next (now) published work by Russell [21], a paper read before the Cam
bridge Mathematical Club on 9 March 1907, contains the system of Principia Math
ematica. The axioms are offered as alternative set to Frege's axioms, with no mention
of the intervening set in "The Theory of Implication" .

The system in Principia Mathematica probably came a little sooner. A form of
one of the axioms, p.:::> pvq, is mentioned as a primitive proposition in a letter from
Russell to Jourdain on 10 September 1906 [6].

The last major work before Principia Mathematica whlch contains a list of pri
mitive propositions is "Mathematical Logic as Based on the Theory of Types" [22].
Here the Principia Mathematica system appears, complete except for working out
the propositions. Russell comments, "In a previous article in [The American Journal
of Mathematics], I took implication as undefinable, instead of disjunction, because
it enables one to diminish the number of primitive propositions."

Thus the change in primitive propositions is a matter of taste, but taste dictated
by one goal. One system is preferred over another if the former has a fewer number
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of primitive ideas. This single goal motivates the effort in propositional logic, to
make the edifice of mathematics stand on as small a base as possible.

10. Conclusion
The work done in the propositional logic section of Principia Mathematica is a

model of succinct expression. There are more than 200 numbered propositions in
Part 1, Section A. Many of the demonstrations contain parts which could stand
alone. This raises the number of propositions to about 350-a monumental number

by any standards.
It is the culmination of a long line of work which can be traced through "The

Theory of Implication" to the founding work of Peano and Frege. From Peano
Russell borrowed the notation and from Frege the concepts. When Russell was done
we had a new work which went far beyond that of his two predecessors.

In the development of propositional logic Russell holds a premier position. All
questions must be asked and answered in terms of Principia Mathematica. There
are still many problems for the historian and mathematician to work on. I enjoy the
opportunity to present some of my work and ideas.

Dover, New Hampshire

APPENDIX A. COMPARISO'N OF TEXT

I have prepared a comparison of some of the text in "The Theory of Implication", pp. 159
64, and the corresponding text in Part I, Section A of the second edition of Principia Math
ematica, pp. 90-4. In this comparison "The Theory of Implication" is taken as the starting
place. Deletions are indicated by italicized text within curly brackets (to distinguish them from
normal italicized text), and additions are indicated by bold face. Thus to read the "Theory
of Implication" version one should read the normal text and the italic text only. To read the
Principia Mathematica version one should read the normal text and the text in bold face only.
The footnotes have been numbered consecutively in "The Theory of Implication". Footnotes
which appear only in Principia Mathematica have a number and a letter.

The Text by Russell

The purpose of the present {article} section is to set forth the first {chapter} stage of the deduc-
, tion of pure mathematics from its logical foundations. This first {chapter} stage is necessarily

concerned with deduction itself, i.e. with the principles by which conclusions are inferred
from premisses. If it is our purpose to make all our assumptions explicit, and to effect the
deduction of all our other propositions from these assumptions, it is obvious that the first
assumptions we need are those that are required to make deduction possible. Symbolic logic
is often regarded as consisting of two coordinate parts, the theory of classes and the theory of
propositions. But from our point of view these two parts are not coordinate; for in the theory
of classes we deduce one proposition from another by means of principles belonging to the
theory of propositions, whereas in the theory of propositions we nowhere require the theory
of classes. Hence in a deductive system, the theory of propositions necessarily precedes the

theory of classes.
But the subject to be treated in what follows is not quite properly described as the theory

of propositions. It is in fact the theory of how one proposition can be inferred from another.
Now in order that one proposition may be inferred from another, it is necessary that the twO
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should have that relation which makes the one a consequence of the other. When a propositions
q is a consequence of a proposition p, we say that p implies q. Thus deduction depends upon
the relation of implication, and every deductive system must contain among its premisses as
many of the properties of implication as are necessary to legitimate the ordinary procedure of
deduction. In the present {article} section, certain propositions {concerning implication} will be
stated as premisses, and it will be shown that they are sufficient for all common forms of
inference. It will not be shown that they are all necessary, and it is {probable} possible that the
number of them might be diminished. All that i~ affirmed concerning the premisses is (I) that
they are true, (2) that they are sufficient for the theory of deduction, (3) that I do not know
how to diminish their number. But with regard to (2), there must always be some element of
doubt, since it is hard to be sure that one never uses some principle unconsciously. The habit
of being rigidly guided by formal symbolic rules is a safeguard against unconscious assump
tions; but even this safeguard is not always adequate.

{The symbolism adopted in what follows is that of Peano, with certain additions and changes. I
have adopted his symbol for implication P), and his use of dots instead of brackets, also his plan
of numbering propositions with an integral and a decimal part./ But although the symbolism is in
the main Peano's, the ideas are more those of Frege. 2 Frege's work, probably owing to the incon
venience of his symbols, has received far less recognition than it deserves. I shall not refer to him in
detail in what follows, but whoever will consult his work will see how much lowe him. Especially
I have adopted form him the assertion sign (cf *1·1 infra), the interpretation of"p implies q," (cf
*1·2 infra), and the distinction between asserting a proposition for all values of the variable or
variables, and asserting it for any values (cf *7 infra). The plan of taking implication and negation
as our primitive ideas is also his.

*1· Primitive Ideas.}
.1 PRIMITIVE IDEAS AND PROPOSITIONS

Since all definitions of terms are effected by means of other terms every system of definitions
which is not circular must start from a certain apparatus of undefined terms. It is to some
extent optional what ideas we take as undefined in mathematics; the motives guiding our
choice will be (I) to make the number of undefined ideas as small as possible, (2) as between
two systems in which the number is equal, to choose the one which seems simpler and easier.
{f} We know no way of proving that such and-such a system of undefined ideas contains as
few as will give such-and-such results.J Hence we can only say that such and such ideas are
undefined in such and such a system, not that they are indefinable. Following Peano, {l} we
shall call the undefined ideas and the undemonstrated propositions primitive ideas and prop
ositions respectively. These ideas are explained by means of descriptions intended to point out
.to the reader what is meant but the explanations do not constitute definitions, because they
really involve the ideas they explain.

In the present number, we shall first enumerate the primitive ideas required in this sec
tion; then we shall define implication; and then we shall enunciate the primitive propo
sitions required in this section. Every definition or proposition in the work has a number,
for purposes of referens:e. Following Peano, we use numbers having a decimal as well as
an integral part, in order to insert new propositions between any two. A change in the
integral part of a number will be used to correspond to a new chapter. Definitions will
generally have numbers whose decimal part is less than .1, and will be usually put at the

I {For an explanation of Peano's symbolism, cf. Whitehead, "On Cardinal Numbers," American Journ~1 of
Mathematics, Vol. XXiV, NO.4.}

2 {Cf. his "Grundgeserze der Arithmetik," Vol. I,Jena, 1893 Vol. 11, I903.}
3 The recognized method of proving independence are not applicable, without reserve, to fundamentals.

Cf. my "Principles of Mathematics", §17. What is there said concerning primitive propositions applies
with even greater force to primitive ideas.



110 Daniel J. O'Leary

beginnings of chapters. In references, the integral parts of the numbers of propositions
will be distinguished by being preceded by a star; thus "*1·01" will mean the definition or
proposition so numbered, and "*1" will mean the chapter in which propositions have num
bers whose integral part is 1, i.e. the present chapter. Chapters will generally be called
"numbers."

PRIMITIVE IDEAS.

(1) Elementary propositions. By an "elementary" proposition we mean one which does not
involve any variables, or, in other language, one which does not involve such words as
"all," "some," "the" or equivalents for such words. A proposition such as "this is red,"
where "this" is something given in sensation, will be elementary. Any combination of given
elementary propositions by means. of negation, disjunction or conjunction (see below) will
be elementary. In the primitive propositions of the present number, and therefore in the
deductions from these primitive propositions in *2-*5, the letters p, q, r, s, will be used
to denote·elementary propositions.

(2) Elementary propositional functions. By an "elementary propositional function" we
shall mean an expression containing an undetermined constituent, i.e. a variable, or sev
eral such constituents, and such that, when the undetermined·constituent or constituents
are determined, i.e. when values are assigned to the variable or variables, the resulting
value of the expression in question is an elementary proposition. Thus if p is an undeter
mined elementary proposition, "not-p" is an elementary propositional function.

We shall show in *9 how to extend the results of this and the following numbers (*1
*5) to propositions which are not elementary.

{*1'J} (3) Assertion.-Any proposition may be either asserted or merely considered. If I say
"Caesar died", I assert the proposition "Caesar died"; if I say" 'Caesar died' is a proposition",
I make a different assertion, and "Caesar died" is no longer asserted, but merely considered.
Similarly in a hypothetical proposition, e.g. "if a = b, then b = a", we have two unasserted
propositions, namely "a = b" and "b = a" while what is asserted is that the first of these
implies the second. In language, we indicate when a proposition is merely considered by "if
so-and-so" or "that so-and-so" or merely inverted commas. In symbols, if p is a proposition,
p by itself will stand for the. unasserted proposition, while the asserted propositio~ will be
designated by

"f-.p"

The sign "fo" is called the assertion-sign'3; it may be read "it is true that" (although philo
sophically this is not what it means). The dots after the assertion-sign indicate its range; that
.i~ to say, everything following is asserted until we reach either an equal number of dots or the
end of the sentence. Thus "f-: p:::) .q" means "it is true that p implies q", whereas
"f- •p . :::) f- •q" means "p is true; therefore q is true". ,b The first of these does not necessarily
involve the truth either of p or of q, while the second involves the truth of both.

(4) Assertion of a propositional function. Besides the assertion of definite propositions,
we need what we shall. call "assertion of a propositional function." The general notion of
asserting any propositional function is not used until *9 but we use at once the notion of
asserting various special elementary propositional functions. Let x be a propositional func
tion whose argument is X; then we may assert X without assigning a value to x. This is
done, for example, when the law of identity is asserted in the form "A is A." Here A is
left undetermined, because, however A may be determined, the result will be true. Thus

33 We have adopted both the idea and the symbol of assertion from Frege.
3b Cf. Principles ofMarhemarics, §38.
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when we assert x, leaving x undetermined, we are asserting an ambiguous value of our
function. This is only legitimate if, however the ambiguity may be determined, the result
will be true. Thus take, as an illustration, the primitive proposition *1·2 below, namely

"f-:pvp.:::).p,"

i.e. "'p or p' implies p." Here p may be any elementary proposition: by leaving p unde
termined, we obtain an assertion which can be applied to ~ny particular elementary prop
osition. Such assertions are like the particular enunciations in Euclid: when it is said "let
ABC be an isosceles triangle; then the angles at the base will be equal," what is said applies
to any isosceles triangle; it is stated concerning one triangle, but not concerning a definite
one. All assertions in the present work, with very few exceptions, assert propositional
function, not definite propositions.

As a matter of fact, no constant elementary proposition will occur in the present work,
or can occur in any wOfk which employs only logical ideas. The ideas and propositions of
logic are all general: an assertion (for example) which is true of Socrates but not of Plato,
will belong' to logic,'c and if an assertion which is true of both is to occur in logic, it must
not be made concerning either, but concerning a variable x. In order to obtain, in logic,
a definite proposition instead of a propositional function, it is necessary to take some prop
ositional function and assert thal it is true always or sometimes, i.e. with all possible values
of the variable or with some possible value. Thus, giving the name "individual" to whatever
there is that is neither a proposition nor a function, the proposition "every individual is
identical with itself" of the proposition "there are individuals" will be a proposition belong
ing to logic. But these propositions are not elementary.

(5) Negation. If p is any proposition, the proposition "not-p," or "p is false," will be
represented by "~p." For the present, p must be an elementary proposition.

(6) Disjunction. If p and q are any propositions, the proposition "p or q," i.e. "either p
is true or q is true," where the alternatives are to be not mutually exclusive, will be rep
resented by

"pvq."

This is called the disjunction or the logical sum of p and q. Thus ""'pvq" will mean "p
is false or q is true"; ""'(pvq)" will mean "it is false that either p o.r q is true," which is
equivalent to "p and q are both false"; ""'("'pV"'q)" will mean "it is false that either p
is false or q is false," which is equivalent to "p and q are.both true"; and so on. For the
present, p and q must be elementary propositions.

The above are all the primitive ideas required in the theory ofdeduction. Other primitive
ideas will be introduced in Section B.

{*1'2 Implication.} Definition of Implication. When a proposition q follows from a prop
osition p, so that if p is true, q must also be true, we say that p implies .q. The idea of
implication, in the form in which we require it, can be defined. The meaning to be given
to implication in what follows may at first sight be somewhat artificial; but although there are
other legitimate meanings, the one here adopted is, {if I am not mistaken,} very much more
convenient than any of its rivals. The essential property that we require of implication is this:
"What is implied by a true proposition is true". It is in virtue of this property that implication
yields proofs. But this property by no means determines whether anything, and if so what,
is implied by a false proposition, {or by something which is not a proposition at all.} What it does
determine is that, if p implies q, then it cannot be the case that p is true and q is {not true.}
false, i.e. it must be the case that either p is false or q is true. The most convenient inter-

.le When we say that a proposition "belongs to logic," we mean that it can be expressed in terms of
the primitive ideas of logic. We do not mean that logic applies to it, for that would be true of any
proposition.
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pretation of implication is to say, conversely, that {unless p is true and q is not true} if either p
is false or q is true, then "p implies q" is to be true. Hence, "p implies q" {will be a relation
which holds between any two entities p and q unless p is true and q is not true, i.e. whenever either
p is not true or q is true.4 The proposition "p implies q" is equivalent to "if p is true, then q is
true", i.e. '''p is true' implies 'q is true"'; it is also equivalent to "if q is false, p is false". When
p is in fact true, "implies" may be replaced by "therefore", i.e. in place of "p implies q", we may
say "p is true, therefore q is true". For "implies" we use the symbol "::J", thus

"p::J q" means "p implies q"

"p. ::J . q::J r" means "p implies that q implies r", etc. The chief advantage of the above interpre
tation is that it avoids hypotheses which are otherwise necessary. We wish, for example, to assert
"p::J p". If implication can only hold between propositions, it is necessary to preface "p::J p" by
the hypothesis "p is a proposition"; and whenever we want to use "p ::J p" in a particular case, we
shall have to prove first that we are applying it to a proposition.s But this is highly inconvenient.
Again, paradoxes result from restricting the meaning of implication. For example, it will be admitted
that "if p and q are irue, then r is true" is equivalent to "if p is true, then if q is true, r is true",
i.e. "if p is true, then q implies r". Also it will be admitted that if p and q are true, then p is true.
Hence, by the above admission, if p is true, then q implies p; and here q is not subject to any
limitation, for even if q is. not a proposition, it must be admitted that if p and q were both true, p
would be true. Hence, unless a true proposition p is to be implied by every entity q, one at least of
the above obvious propositions will have to be denied.} is to be defined to mean: "Either pis
false or q is true." Hence we put:

*1·01. p::Jq. = ."'pvq Of.

Here the letters "Of" stand for "definition." They and the sign of equality together are
to be regarded as forming one symbol, standing for "is defined to mean."sa Whatever
comes to the left of the sign of equality is defined to mean the same as what comes to the
right of it. Definition is not among the primitive ideas, because definitions are concerned
solely with the symbolism, not with what is symbolized; they are introduced for practical
convenience, and are theoreticaUy unnecessary.

In virtue of the above definition, when "p ::Jq" holds, then either p is false or q is true;
hence if p is true, q must be true. Thus the above definition preserves the essential char
acteristic of implication; it gives, in fact, the most general meaning compatible with the
preservation of this characteristic.

{*1.3 The Variable. A single letter, unless specially defined to have a certain constant meaning,
will always stand for an independent variable. The possible values of an independent variable are
always to include all entities absolutely. The reason for this is as follows. Ifwe affirm some statement
about x, where x is restricted by some condition, we must mention the condition to make our statement
accurate, but then we are really affirming that the truth of the condition implies the truth of our
original statement about x; and this in virtue of our interpretation of implication, will hold equally
when the condition is not fulfilled. The "universe ofdiscourse", as it has been called, must be replaced
by a general hypothesis concerning the variable, and then our formulae are true whether the hypothesis
is verified or not, because an implication holds whenever its hypothesis is not true. The old theory

4 {Cf. *5·53 and *5-54 below.}
S {In my "Principles of Malhemalics" [ adopled lhe inlerprelalion Up and q are proposilicms, and p is false or

q is lrue", inslead of, as here, pis nOI lrue or q is lrue". Thus "p:J q" was false if p was nol a proposilion,
and up:J p" was equivalenl 10 up is a proposilicm". The advantages of Ihe present inlerprelalicm may be seen
by comparing lhe primilive proposilicms of *2 below wilh Ihose of §r8 of lhe above menlioned work.} .

Sa The sign of equality not foUowed by the letters "Of" wiu have a different meaning, to be defined

later.
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of the "universe" had the defect of introducing tacit hypotheses, thus making all enunciations incom
plete, since a hypothesis does not cease to be an essential part ofa proposition merely because we do
not take the trouble to state it.

In such a formula as (say) "x. = • p::J q", the x is still an independent variable, because we
are not only concerned with the value of x that makes the formula true, but also with all other
values that make it false. On the other hand, "p::J q" is a dependent variable.

*1·4 Propositional Functions. Any statement about a variable x will be expressed by

(C)(x)

or by (A)(x), (B)(x), etc. Similarly any statement about two variables x and y will be expressed by
(C)(x, y)

or by (A)(x, y), (B)(x, y) etc. and so onfor any number ofvariables. Such expressions are functions
whose values are propositions, hence we call them propositional functions. Thus "p::J q" is a
propositional function of p and q, "p::J q" is a propositional function of p. There are other kinds
offunctions in mathematics, but they are not required for the theory of implication.

When an expression of the form (C)(x) is asserted, what is meant is that the expression in question
is true for any value of the variable x. Thus, e.g.

"1-.p::Jp"

means. "For any value ofp, p implies p". But such an expression as (C)(p::Jq) does not assert
that (C)(x) holds for any argument, but only for such as are of the form p::J q, e.g. if (C)(x) is "x
is a proposition", then .

"I- . (C)(x)" is false, but
"I-. (C)(p::J q)" is true.

Generally, "I-. (C)«A( y»" means: "For any value of y, (C)«A)( y» is true", or "For any value
of y, (A)( y) is a value of x for which (C)(x) is true". The C in (C)(x) has no meaning by itself;
all that its use assumes is that (C)(x) and (C)( y) are to have similarity of form, although this form
is not always capable of separate specification apart from any argument x.

*1·5 Negation. The proposition "p is not true" is expressed by

"'p.

Thus"'" p" will be true ifp is not a proposition, and if p is a false proposition; it will only be false
if p is a true proposition.

One other primitive idea will be introduced in *7. Two others, or perhaps three, complete what
is required for the whole of pure mathematics. Thus, six are necessary for the theory of implication,
and eight or nine for all pure mathematics.}

APPENDIX B. SOME MAJOR WRITINGS

Russell used three sets of axioms for propositional logic in his major writings. A set was intro
duced in each of Principles of Mathematics (PoM), "The Theory of Implication" (TI), and
Principia Mathematica (PM). Listed below are some of Russell's published writings on logic
in the period from Principles of Mathematics to Principia Mathematica, Volume I. This list is
adapted from Kenneth Blackwell's compilation which appears in Appendix B of Essays in
Analysis {II]. The numbering scheme there has been retained for ease of reference. The list
below excludes reviews and unpublished work. The axiom system used in each case is noted.
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PoM

TI

PM

PM

PM

[I]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[II]
[12]

[13]

1903 (a) The Principles of Mathematics
1904 (a) Meinong's Theory of Complexes and Assumptions

(b) The Axiom of infinity
(c) Non-Euclidean Geometry

1905 (a) The Existential Import of Propositions
(c) On Denoting
(e) Sur la relation des mathematiques a la logistique

1906 (a) On Some Difficulties in the Theory of Transfinite Numbers and Order Types
(b) On the Substitutional Theory of Classes and Relations
(c) The Theory of Implication
(g) Les Paradoxes de la logique
(i) The Nature of Truth

1907 (a) On the Nature of Truth
(b) The Regressive Method of Discovering the Premisses of Mathematics
(c) The Study of Mathematics

1908 (a) Transatlantic "Truth"
(b) "If" and "Imply"
(d) Mathematical Logic as Based on the Theory of Types

1909 (a) Pragmatism
1910 (b) Principia Mathematica, Vol. 1
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