Bibliographies, Archival Inventories, Indexes

VARIANTS, MISPRINTS AND A BIBLIOGRAPHICAL INDEX FOR INTRODUCTION TO MATHEMATICAL PHILOSOPHY

Kenneth Blackwell Russell Research Centre / McMaster U.
Hamilton, on, Canada L8s 4L6 BLACKWK@MCMASTER.CA

VARIANTS, ETC. BETWEEN MANUSCRIPT AND FIRST PRINTING

Russell wrote the manuscript of Introduction to Mathematical Philosophy (London: Allen \& Unwin, 1919) in prison. He began it in May 1918 and finished in July. He sent it out for typing. The proofreading of the typescript was done by Dorothy Wrinch, who had studied mathematical logic with Russell. She reported to him that she corrected many errors in the typescript (which is not extant) and sent it on to the publisher. Russell saw the text again in proof (also not extant), corrected it and wrote the index. Yet the first impression (March 1919) had a large number of significant errors, some serious (e.g., a line and several ϕ 's omitted), with many persisting through the twelfth printing (1967), the last in Russell's lifetime. They are corrected in Kevin Klement's Online Corrected Edition (2009). Still unidentified are the "half sheet" of "entirely trivial" corrections for the fourth printing (1930).

Verbal changes in IMP between the manuscript and first printing follow. Also included are corrections of typographical errors and a record of paragraphing and italicization changes. Alterations within the manuscript are excluded. They are easily found on the manuscript in the Bertrand Russell Archives.
"OCE" refers to the Online Corrected Edition, which exists in several electronic formats. OCE introduces corrections and new emendations to the wording and symbols and to minor features of presentation. See the appendix to any format at http://people.umass.edu/klement/russell-imp.html.

Lines of type are counted from the top of the page, excluding running heads (whose errors resulting from broken type are not reported). Page and line
numbers are constant throughout the Allen \& Unwin, Routledge and Spokesman printings, although no collation was made of posthumous printings.

Thanks are due to Kevin Klement, John Ongley and Christof Grüber for helping to make these lists more accurate.

8: 18 TThis IMPI+, OCE] This MS
8: 19 A series IMPI + , OCE] Series MS
18: 35 such as that IMPI+, OCE] such that MS
19: 2 collection IMPı+, OCE] collection of classes MS
2I: 33 not less than iooo MS, OCE] less than iooo IMPI+
22: 19-20 posterity ... is IMPI+, OCE] posterity ... are MS
27: 8 a principle IMPI+, OCE] principle MS
27n. Method, chap. iv. IMPI+, OCE]
Method. MS
35: 14 inductive integers. IMPı+, OCE] integers. MS
39: I people $\mathrm{IMPI}_{\mathrm{I}}$, OCE] the people MS
40: 20 It will IMPI+, OCE] It will MS
40: 3 I four terms IMPI+, OCE] four terms MS
43: 2 converse domain MS, OCE] converse $\mathrm{IMPI}_{\mathrm{I}}+$
46: 4 described IMPI+, OCE] describes MS
50: 20 【Cases IMPı+, OCE] Cases MS
53:32 9We may MS, OCE] We may IMPi+
56: Io "Relation-numbers" are IMPI+, OCE] "Relation-numbers" is MS
58 n . open series. Modern Mathematics ... Geometry"). IMPI+, OCE] open series. MS
64: I the square root of -I) IMPI + , OCE] minus one) MS
64: 17 positive or negative IMPı+, OCE] positive and negative MS
66: 26 purpose IMPI+, OCE] purposes MS
70: 6 there IMPI+, OCE] they MS
75: 9-Io definitions IMPI+, OCE] definition MS
76: 20 Dr Whitehead's IMPı+, OCE]

Whitehead's MS
81: 32 The kind of series which is called a "progression" has IMPI+, OCE] This
kind of series, which is called a "progression", has MS
82: 6 progession IMPı+, OCE] progression MS
83: 9 progessions IMPI+, OCE] progressions MS
88: 4 used IMPI+, OCE] uses MS
90: 2 various series $\left.\mathrm{IMP}_{\mathrm{I}+}, \mathrm{OCE}\right]$ series MS
91: in are even IMPı + , OCE] even MS
98: 2 simplest and most IMPı+, OCE] simplest MS
98:25-6 "the limit" (if any). IMPı+, OCE] "the limit (if any)". MS
98: 29 limit or maximum MS, OCE] limits or maximum IMPI+
99: 22 If a class IMPI + , OCE] If a class MS
99: 28 "upper limiting points" IMPI + , OCE] "limiting points" MS
ioo: 8 no terms except the last IMPI+,
OCE] no terms MS
IO5: 13 without definite IMPI + , OCE]
with definite MS
nio: I4 limit of its values MS, OCE]
limit of its value IMPI+
II3: 32 advantage MS, OCE] advantages IMPı+
II4: 8 his wishes IMPI + , OCE] all his wishes MS
I2I: 8 Let y be MS, OCE] SLet y be IMPı+
I22n. *257-258. IMPI+, OCE] *257 and *258. MS
ı23n. Zermelo's axiom. IMPı+, OCE]
"Zermelo's axiom". MS
124: 35 one correlator of α with β, and similarly for every other pair. This requires a selection MS, OCE] one selection IMPI^{+}

I29： $21 \gamma_{\mathrm{I}} \mathrm{MS}$ ，OCE］$y_{\mathrm{I}} \mathrm{IMPI}+$
I29：21 γ_{2} MS，OCE］y_{2} IMPI +
I29： $22 \gamma_{3}$ MS，OCE］y_{3} IMPI＋
131：21 TThe way MS，OCE］The way
IMPı＋
ı31： 22 follows．One MS，OCE］fol－ lows：－One IMPI＋
137n．I＂Mathematical ．．．262．IMPI＋， OCE］${ }^{\text {I }} \mathrm{MS}$ 〈note was left blank〉
137n． $2^{2 " L}{ }^{2}$ paradoxes ．．．650．IMPI＋， OCE］${ }^{2}$ MS 〈note was left blank〉
138n． $2{ }^{2}$ Dedekind ．．．66．IMPI + ，OCE］〈note was part of n．I in MS
139： 14 Socrates，and then the idea of the idea of Socrates，MS，OCE］Socrates， IMPI＋
147： 29 negation IMPı＋，OCE］negative MS
148n．I ${ }^{1}$ Trans．．．．488．IMPI + ，OCE］${ }^{1}$
MS 〈note was left blank〉
15i： 26 non－formal IMPI + ，OCE］ non－formal MS
152： 28 true．＂From IMPı＋，OCE］true．＂〈new line〉 From MS
153：33 That IMPı＋，OCE］This MS
153n．${ }^{\text {＇See Mind ．．．249－247．IMPı＋，}}$ OCE］${ }^{1} \mathrm{MS}$ 〈note was left blank〉
157： 5 talk IMPı＋，OCE］tak MS 16onn．IMP＋1，OCE］〈the 2 notes appear in MS in reverse order but Russell added an arrow to switch them，positioning n．I at the end of the par．on I6I，and n． 2 where n．I is，after＂is always true．＂，in－ stead of after is sometimes true．＂＇＞
161： 2 type to which ϕx MS，OCE］type to which $x \mathrm{IMP}_{\mathrm{I}+}$
162： 15 significant IMPI＋，OCE］ significant MS
167：9 $\delta \boldsymbol{\epsilon}$ IMPı＋，OCE］$\delta \boldsymbol{\epsilon}$ MS \langle the acute accent made it the wrong word \rangle
168：7－8 anyone IMPI + ，OCE］any one MS 〈also at $172: 2 I\rangle$
169n．${ }^{1}$ Untersuchungen ．．．1904．IMPI + ， OCE］${ }^{1}$ MS 〈note was left blank〉
175： $24 \phi \times$ MS，OCE］x IMPı +
176：33 propositional function $\phi x \mathrm{MS}$ ， OCE］propositional function x IMPI＋
178： 13 And generally IMPı＋，OCE］

IAnd generally MS
186： 35 a function ϕx MS，OCE］a func－ tion x IMPI +
187：I－2 functions of the class deter－ mined by $\phi \times \mathrm{MS}$ ，OCE］functions of the class determined by x IMPI +
188： 13 assert that ϕx IMPI＋，OCE］as－ sert that ϕ MS
189：io＂typical Frenchman＂MS，OCE］
＂typical＂Frenchman IMPı $+\langle M S$ is
ambiguous on whether＂Frenchman＂is
inserted before or after the closing quotes〉
189：in＂possessing MS，OCE］＂possess－ ing IMPI＋
ı91： 34 stated IMPı＋，OCE］adduced MS
192： 32 in this IMPI + ，OCE］of this MS
194： 13 symbolic IMPI＋，OCE］deductive MS
194： 27 indicate IMPI + ， OCE ］point out MS
195： 34 a number of separate studies，
OCE］number of separate studies MS］
numbers of separate studies IMPI＋
197： 19 Socrates MS，OCE］Socrates
IMPı＋
197： 24 are β＇s MS，OCE］are β IMPI＋ 198： $24 x \mathrm{R} y \mathrm{MS}, \mathrm{OCE}] x \mathrm{R} y$ ，IMPı＋

〈also at 198：35，199： 3 ஆ II，20I： 32\rangle
200： 31 words for forms MS，OCE］word
for forms IMPI＋
205： 7 seem MS，OCE］seem IMPı +
205： 18 symbols．Since ．．．express，it is
IMPI＋，OCE］symbols，since ．．．ex－
press．It is MS
206： 9 written．IMPI＋，OCE］written．
〈new line〉 THE END MS
Following are corrections made to Rus－ sell＇s text between IMPi and subsequent printings．Those he submitted in 1930 （for the 4 th printing）remain unidentified， though they may not have included any－ thing new．OCE incorporates all known corrections．These corrections came to light a letter from A．F．T．Prudon，II Sept． 1919 in the Russell Archives；a list Russell sent to Allen \＆Unwin about Feb． 1920；G．A．Pfeiffer＇s review of the book in

Bulletin of the American Mathematical Society 27 (1920): 8I-90; and Russell's own copy of IMP (2nd printing, April 1920).

6: 3 every IMP2+, OCE] any MS, IMPi
33:7 symmetrical MS, IMP2+, OCE] asymmetrical IMPı
36: 25-6 aliorelative MS, IMP2+, OCE] aliorelation IMPI
40: 2 and b, a lies - IMP2+, OCE] b and a lies- IMPI] and b lies a; MS
99: 4 segment MS, IMP2+, OCE] sequent IMPi
in5: 8 relation P to $\left.z \mathrm{MS}, \mathrm{IMPı}{ }^{2+}, \mathrm{OCE}\right]$ relation P to $x \mathrm{IMPI}-\mathrm{II}$
160: 19 an immortal MS, IMP2+, OCE] a mortal MS, IMPı
164: 14 conversion MS, IMP2+, OCE] conversation IMPI
171: 5 propositional function $\phi \times \mathrm{MS}$, IMP2+, OCE] propositional function x IMPi
173: 13 men. MS, IMP_{5+}, OCE] man. IMPı-4
186: 17 defined by MS, IMP2+, OCE] defined of IMPI

BIBLIOGRAPHICAL INDEX

Russell's bibliographical references in Introduction to Mathematical Philosophy include some unique references for his books on mathematical logic. They are the publications by Clifford, Lewis, Meinong, Peano, Poincaré, Veblen and Zermelo. See my bibliographical indexes to The Principles of Mathematics and Principia Mathematica in Russell (20 [2000]: 14I-50, and 25 [2005]: 77-80, respectively). As well, IMP is the first book in which Russell cited the works by Nicod and Sheffer, although he had alluded to them in "The Philosophy of Logical Atomism" (Papers 8: 187). "(RL)" means the work is in Russell's library at McMaster. (Visit his library at http://digitalrussell.mcmaster.ca.)

Bolzano, Bernard

- Paradoxien des Unendlichen, ed. F. Přihonský (Leipzig: C. H. Reclam, 185I). (RL, I889 edn.) i38n.
Browning, Robert
- ["A Grammarian's Funeral". In his Men and Women (1855).] 167
Cantor, Georg
- "Ueber eine elementare Frage der Mannigfaltigkeitslehre", Jahresbericht der Deutschen Mathematiker-Vereinigung I (1891): 75-8.85n.
Clifford, W. K.
- The Common Sense of the Exact Sciences, 2nd edn. (London: Kegan Paul, Trench, 1886). (RL) 76
Dedekind, Richard
- Stetigkeit und irrationale Zablen, 2nd edn. (Brunswick: F. Vieweg, 1892). (RL) 69 n .
- Was sind und was sollen die Zablen? 3rd edn. (Brunswick: Vieweg, 1893; ist edn., 1888). No. 66. (RL) 138 n.
Euclid
- [Elements.] 67

Frege, Gottlob

- Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (Halle: L. Nebert, 1879). (RL) 25n. 2
- Grundgesetze der Arithmetik, 2 vols. (Jena: H. Pohle, 1893, 1903). (RL) inn.
- Die Grundlagen der Arithmetik(Breslau: Wilhelm Koebner, 1884). (RL) in
Homer
- Iliad. (RL) 179
- Odyssey. 179

Lewis, C. I.

- "Implication and the Algebra of

Logic", Mind 2I (1912): 522-31. 153

- "The Calculus of Strict Implication", Mind 23 (1914): 240-7. 153
Meinong, Alexius
- "Über Gegenstandstheorie", in Meinong, ed., Untersuchungen zur Gegenstandstheorie und Psychologie (Leipzig: Barth, 1904). 169
Nicod, Jean
- "A Reduction in the Number of the Primitive Propositions of Logic", Proceedings of the Cambridge Philosophical Society 19, no. I (Jan. 1917): 32-4I. 148, 15 In .
Peano, Giuseppe
- "Sui fondamenti della Geometria", Rivista di matematica 4 (1894): 51-90. (RL) 39 n .
Plato
- Parmenides, in The Dialogues of Plato, ed. B. Jowett, 2nd edn., 5 vols. (Oxford: Clarendon P., 1875). (RL) 138
Poincaré, Henri
- Science and Method, Preface by Russell (London: Nelson, 1914). 27n.
Russell, Bertrand
- The Principles of Mathematics (Cambridge: Cambridge U.P., 1903). 25n.I, 39n., 4In., 73n., 76n., 137, 145
- "Les Paradoxes de la logique", Revue de métaphysique et de morale 14 (1906): 627-50. 137
- "Mathematical Logic as Based on the Theory of Types", American Journal of Mathematics 30 (1908): 222-62. 136
- Our Knowledge of the External World (London and Chicago: Open Court, 1914). 106
- ["On the Experience of Time"], The Monist 25 (1915): 212-33. 106
Scott, Sir Walter
- Waverley, or, 'Tis Sixty Years Since (Edinburgh: J. Ballantyne, 1814). (RL, I87I edn.) 173-8
Shakespeare, William
- Hamlet. (RL) 169

Sheffer, H. M.

- "A Set of Five Independent Postulates for Boolean Algebras, with Application to Logical Constants", Transactions of the American Mathematical Society 14 (1913): 48I-8. (RL) 148
Veblen, Oswald
- "The Foundations of Geometry", in J. W. A. Young, ed., Monographs on Topics of Modern Mathematics Relevant to the Elementary Field (New York: Longmans, 19II). 58n.
Wells, H. G.
- ["The Man Who Could Work Miracles". 1898.] 114
Whitehead, A. N.
- A Treatise on Universal Algebra with Applications, Vol. I (Cambridge: Cambridge U. P., I898). (Listed but didn't arrive with RL) 76
- and Bertrand Russell. Principia Mathematica, 3 vols. (Cambridge: Cambridge U.P., 1910, 1912, 1913). (On p. 2n. Vol. II is said to be 191ı.)
$2 n$.
23n. (*IIO)
64 ($* 300$, esp. $* 303$)
73n. (*210-14, *31off.)
82n.I (*123)
95 (*172-6)
107n. (*230-4)
II9 ($* 8$ off., $*$ II4)
122n. (I: *88, 3: *257-8)
133n. (2: *120ff., 3: *303ff.)
136 (i: Intro., Chap. 2; I: $*$ I2 and
*20; 2: Prefatory Statement)
145 ("passim")
148, 149, 150
151n. (re omission)
I6on. (: $* 9$)
188
188n.I ((: 75-84, *20)
188n. 2 (Intro., Chap. 2; *i2)
195
203n. ("defect in logical purity")
Zermelo, Ernst
- "Beweis, dass jede Menge wohlgeordnet werden kann", Mathematische Annalen 59 (1904): 514-16. 123n.

