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My aim is to examine logical types in Principia Mathematicaz from two (partly
independent) perspectives. The Wrst one pertains to the ambiguity of the notion
of logical type as introduced in the Introduction (to the Wrst edition). I claim
that a distinction has to be made between types as called for in the context of
paradoxes, and types as logical prototypes. The second perspective bears on
typical ambiguity as described in Russell and Whitehead’s “Prefatory Statement
of Symbolic Conventions”, inasmuch as it lends itself to a comparison with
speciWc systems of modern typed lambda-calculus. In particular, a recent paper
shows that the theory of logical types can be formalized in the way of a
lambda-calculus. This opens the way to an interesting reconciliation between
type theories in the Russellian sense of the word, and type theories in the
modern sense. But typical ambiguity is not taken into account in the paper. I
would like to take up that question of typical ambiguity, by extending the typed
lambda-calculus to be used.

T wo kinds of generality can be attributed to logical types in Prin-
cipia Mathematica, and they ought to be clearly distinguished.
The Wrst one, which I will call “external generality”, pertains to

the formality of types as introduced in the Introduction (to the Wrst
edition) of Principia. I claim indeed that the formal system of ramiWed
type theory lends itself to diTerent “epistemic realizations”, in which each
type is assigned a particular interpretation, namely the set of all concrete
propositional functions of that type in the epistemic realization that is
considered. For example, the concrete propositional function “xz is green”
will correspond to a universal if it turns out to be an object of acquain-
tance in the epistemic perspective at stake, and otherwise to a deWnite
description involving higher-order quantiWcation. In the Wrst case only,
it will be part of the interpretation of the type of predicative Wrst-order
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86 brice halimi

propositional functions. That variety of possible epistemic counterparts
of each type is what substantiates and explains its formality.

The second kind of generality that can be attributed to logical types,
and which I will call “internal generality”, bears on typical ambiguity, as
described in Russell and Whitehead’s “Prefatory Statement of Symbolic
Conventions” at the beginning of Principia, Volume ii. My claim is that
it can be formalized within speciWc systems of modern typed lambda-
calculus. In particular, a recent paper (Kamareddine et al. 2002) shows
that the theory of logical types can be formalized in the way of a lambda-
calculus. This opens the way to an interesting reconciliation between
type theories in the Russellian sense of the word, and type theories in the
modern sense. But typical ambiguity is not taken into account in the
paper. I would like to take up that question of typical ambiguity, by
extending the typed lambda-calculus to be used.

1.wformal theory and epistemic realizations of
logical types

Referring to Quine and Sommerville, Nicholas GriUn makes the fol-
lowing remark:

… Russell’s type theory is to some extent context sensitive: for example, an item
which, in one context, may be taken to be simple may, in another, turn out to
be complex; and thus terms like “individual” or “Wrst-truth” are not stable across
contexts…. An example occurs in connection with the word “Socrates” which
when used by Socrates himself denotes a simple individual of Socrates’ acquain-
tance; whereas, when used by someone who has never met Socrates, it is a
complex hidden description to be analyzed by Russell’s theory of descriptions.
Thus Socrates is a possible value of z/zx̂z is an individual/ only for Socrates himself,
for others, with no acquaintance with Socrates, Socrates is not a possible value
for that function…. In general, since diTerent people are acquainted with
diTerent items, the range of total variation for functions like z/zx̂z is an individual/
will be diTerent for diTerent people. Thus it is intolerable to treat such functions
as propositional functions of logic. (GriUn 1980, p. 138)

This is in fact, I think, a general and very important point, which is
worth developing. Indeed, the ramiWed type theory set out in the Intro-
duction of the Wrst edition of Principia Mathematicaz constitutes a formal
system that gives rise to a multiplicity of epistemic analyses, each analysis
depending on the stock of individuals and universals with which the sub-
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Generality of Logical Types 87

ject under consideration is acquainted. Let’s consider, for instance, the
proposition expressing that a certain individual a is green and that an-
other individual b is a great general. If I am in acquaintance with both
the individual az and the universal Green, I shall say, using the formal lan-
guage of Principiaz:

(1) Ga (elementary truth, Wrst-order proposition)

On the other hand, having only access to az as to “the Fy”, I shall say:

(2) ('xz) : (zyz) . Fy . / . y = x . z& . Gx
(Wrst-level truth, Wrst-order proposition)

Having only access to green as in “the colour of grass” (“CoG”), I shall
say:

(3) ('f) :. (cz) : CoG(cz) . / . c = f : z& fa
(second-level truth, second-order proposition)

Eventually, by combining the two descriptions, I shall say:

(4) ('xz) . ('fz) :. (cz) : CoG(cz) . / . c = f : z&
: (zyz) . fy . / . y = x : z& : fzz!zxz

(second-level truth, second-order proposition)

In the third case, “green” is nothing but an incomplete symbol. Never-
theless, its occurrence in any context will generate a second-order quan-
tiWcation. In view of this fact, green may be identiWed with a second-
order propositional function with one individual argument. Therefore,
in that case, supposing furthermore that Being a great generalz is a uni-
versal to me, my epistemic diagram will be the following:

C Individuals: a, Being a great general
C Predicative propositional functions of individuals: x is a great general
C Second-order propositional functions of individuals: “x is green”, i.e.,

x has the colour of grass,

whereas in the Wrst case, supposing furthermore that I understand the
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property of being a great general only as the property of having all
predicates common to great generals in history, it will be:

C Individuals: a, Green
C Predicative propositional functions of individuals: x is green
C Second-order propositional functions of individuals: “x is a great gen-

eral”, i.e., x has all the predicates that make a great general.

And so forth for the other cases. The quotation marks are meant to
express the fact that the Wrst epistemic subject does not speak for herself,
but only uses a predicate that she borrows from another subject’s lan-
guage. The contextual deWnition of “green” in one case, or of “being a
great general” in the other, works as an interpretation rule from an
epistemic universe to another.

1.1wTypes as translation patterns
Principiaz’s ramiWed type theory allows us to distinguish among the

statements from (1) to (4), even between (3) and (4)—hence the utility
of Wne-grained types. Indeed, these statements express propositions in-
volving propositional functions of diTerent types, even if these proposi-
tions correspond, in some way, to the “same” state of aTairs. The logical
structure of the situation will thus vary from subject to subject, and so
will more generally the realization of the whole theory of logical types.

Principia mentions only variables of propositional functions, because
otherwise a particular way of analyzing reality would be wrongly privi-
leged. On the contrary, the theory of logical types remains a neutral
scaTolding that every epistemic subject implements in a speciWc way. In
other words, the epistemic counterpart of ramiWed type theory is an open
multiplicity of realizations, each of which selects which terms will inhabit
such and such type.

All terms turn out to be predicative, because they all get interpreted
by predicates—which ones depends on the epistemic universe that hap-
pens to be considered. To get back to Russell’s example, “Napoleon was
a great general”, as uttered by some subject Sz1, is understood by some
other subject Sz2 as: “(cz) : f z!z(czz!zẑz) . ' . czz!z(Napoleon)”. (We suppose
that “being a predicate required in a great general” is a predicative
second-order propositional function f z!z(czz!zẑz) common to both Sz1 and
Sz2.) Types of ramiWed type theory keep track of properties that some
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1 See Chihara 1973, p. 43, for an example.

subject cannot identify with any predicate that would be available to her.
Here the translation rule

[Gxz]Sz1
 = [(cz) : f z!z(czz!zẑz) . ' . czz!zxz]Sz2

adds no non-predicative terms to Sz2’s universe: “Gzx̂y” is only emulated
from Sz2’s point of view, that is, introduced in Sz2’s language as a mere
symbol in order to account for some of Sz1’s sentences. Still, Sz2 needs to
be able to quantify over such symbols, which means using variables rang-
ing in fact (in Sz2’s perspective) over a domain of non-predicative terms,
but only in a substitutional way. In other words, non-predicative func-
tional terms are only the nominal equivalent, within one epistemic per-
spective, of what is accessible, within another epistemic perspective, as a
predicative function. Accordingly, non-predicative variables are intro-
duced, but only in view of a substitutional reading of quantiWcation, as
a way to render predicative quantiWcation in some other epistemic uni-
verse. Here the complex type of Sz2’s counterpart of Gzz!zx̂ underlies the
translation of terms such as “Gxz” by providing it with a pattern common
to all the instances of the same structure (see the rules for type assign-
ment below).

Viewed as translation patterns between epistemic universes, types
correspond to all possible particular functional forms that one can specify
without overstepping the sphere of the schematic. Types are assigned to
variables so it is usually thought that they basically consist in ranges.1 But
types are primarily types of propositional functions, and types of vari-
ables only in a derivative way. Types are not domains, but forms, whose
Wne-grainedness ought to be maximal.

This means at least that, in the realm of ramiWed type theory, the type
of any propositional function fzx̂ can be conceived of as a diagram dis-
playing not only the simple types of the apparent variables occurring in
f, but the number of such apparent variables, as well as their respective
types; and not only that, but also the number and the respective types of
all the real variables, so that the diagram of anything involved in the ar-
guments, as well as (possibly) in the arguments of these arguments (if the
arguments at issue are themselves functions), in the arguments of the
arguments of the arguments, and so forth, in an inductive manner. So
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the general form of a functional type ought to be: +tya1z, …, tyamz; ty
r
1z, …, tyrnz,,

where the tyajy’s are the respective types of apparent variables, and the tyriy’s
are the respective types of real variables, ordered according to their
occurrences. The type of individuals then becomes +! ; !, = o. The type
of (xz) . czz(x, ŷy) is +o ; oz,, the type of (cz) . f z!z(fz!zẑz, czz!zẑz, xz) is ++! ; oz,;
+! ; oz,, oz,, that is, +(oz); (oz), oz,, where (oz) = +!, oz,. The order is not
mentioned, because it can always be determined directly from the type:
the order of an individual is 0, and the order *fz* of a function fz of type
+tya1z, …, tyamz; ty

r
1z, …, tyrnz, is: max (*tyaiy*, *ty

r
jy*)1z#izz#m

1z#jzz#n
w + 1. Predicative prop-

ositional functions can then be deWned as usual, as the functions whose
order is the least possible with respect to their type. By extension, I shall
call a type predicative when it is the type of predicative functions, and a
variable predicative when all its instances have a predicative type.

1.2wA Russellian concept of model
The reference in Principiaz to an epistemic perspective on logical types,

and the need to sharply distinguish between the formal setting of ram-
iWed type theory, on the one hand, and such-and-such particular epis-
temic realization of it, on the other hand, is shown in particular by the
following well-known passage:

... “fzz!zxz” is a function which contains no apparent variables, but contains the
two real variables fzz!zẑz and x. (It should be observed that when f is assigned, we
may obtain a function whose values do involve individuals as apparent variables,
for example if fzz!zxz is (zyz) . czz(x, yz). But so long as f is variable, fzz!zx contains
no apparent variables.) (PMz 1: 52)

At Wrst sight, it seems diUcult to make sense of the ambiguity of fzz!zx
that Russell suggests. Russell does not mean that, as long as fzz!zx is not
analyzed, it cannot contain apparent variables: that would amount to
saying that fzz!zxz’s internal structure does not exist as long as we do not
want to see it. Russell could mean that fzz!zxz is only a schematic matrix
for genuine propositional functions such as (zyz) . czz(x, yz). But then the
internal structure of fzz!zxz should mirror that of its possible instances, and
so fzz!zxz could be non-predicative, which Russell seems to exclude. In
fact, I think that fzz!zxz and (zyz) . czz(x, yz) belong to two totally diTerent
environments, and that the ambiguity that Russell brings out relies upon
the gap between those two environments. Indeed, as a formal term of the
theory of logical types, “fzz!zxz” is but a Wrst-order predicative variable. Its
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assigned value in a given epistemic universe will be a speciWc predicate,
but the counterpart of that predicate in another epistemic universe may
be a propositional function whose scheme is (zyz) . czz(x, yz)z—zwhere
“czz(x, yz)” is not another variable, but a schematic letter standing for
some actual binary relation. The two cognitive subjects whose epistemic
universes are considered here will use the same term, but analyze it in
two diTerent ways.

The “realizations” of the theory of types are all possible epistemic
diagrams as above, together with translation rules between them. Unlike
the model-theoretic perspective, the Russellian notion of interpretation
takes elementary equivalence (or the corresponding feature) for granted:
as a matter of principle, two “corresponding” private statements have the
same truth value (let us not clarify the “correspondence” which is at stake
here). There is no real comparison between the diTerent Tarskian
interpretations of a logical language and the diTerent realizations of
ramiWed type theory, because, in the latter case, the resources of the lan-
guage (among which are the available proper names) are precisely the
changing parameters. Thus, on the one hand, Russell considers that the
variable fz is “assigned” concrete propositional functions, which is quite
analogous to the way in which values are assigned to variables in Tarsk-
ian semantics. But, on the other hand, two diTerent realizations diTer in
their logical analysis of reality, and never in the truth values they give to
sentences, which is at complete odds with Tarskian semantics. Two
diTerent models of ramiWed type theory are like two sections of the same
universe, and types correspond, in each section, to reference marks for
the logical representation of that section: predicative types correspond to
the frontal sides, and non-predicative types to the dotted lines that occur
in a drawing in perspective.

If a subject Sz1 knows az only as “the Gy”, she will assert something like
“Fy(the Gy)”, i.e.:

(5) ('xz) : (zyz) . Gy . / . y = x : z& . Fx

without being able to indicate any possible instance for x. Any other
subject Sz2 in acquaintance with az, on the contrary, would be able to
instantiate xz. No subject is acquainted with all the possible instances of
x, that is, with everything. The admission of a, as a quasi-value for an
entity variable, into Sz1’s epistemic domain, hinges on Sz1’s believing that
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2 PM 14.18, 1: 180. See 20.71 about classes. The formal properties that Russell al-
ludes to here are all the laws of the “theory of apparent variables”, such as 9.2 (the rule
of universal instantiation).

Sz2’s identiWcation of (what Sz1 conceives of as) the G with some actual
entity a is reliable. Granted that the G actually exists, “the Gy” becomes
what Russell calls a construction, with the same status as other logical
constructions. This means in particular that this deWnite description then
“has (speaking formally) all the logical properties of symbols which
directly represent objects”2: it can, by extension, instantiate any individ-
ual variable.

Individual variables do not refer to actual objects of acquaintance only,
but also, for each subject Sz, to the virtual objects of acquaintance that Sz
receives from any other subject whom she deems to be trustworthy. This
is how Sz1 gets the missing quasi-value of xz in (5)z—zto the extent that she
trusts Sz2. The all-inclusive range of “xz” becomes in that way the asymp-
totic result of the information Xow shared by all truthful epistemic
subjects, or the symmetric equilibrium hopefully reached by all epistemic
players. It does not consist in a single domain of objects of acquaintance,
but is comprised, from the point of view of each subject, of proper values
andz of quasi-values conveyed by others.

1.3wEpistemic model theory
Epistemic realizations are a natural thing to bring up as soon as Prin-

cipiaz’s ramiWed type theory is understood as a formal scheme to be
applied in a natural-language environment. The reducibility axiom lends
itself to an epistemological interpretation:

Although our access to a function fz is mediated by quantiWcation over other
functions, this in no way precludes the existence, within the hierarchy, of ex-
tensionally equivalent predicative functions or functions of order 1.… The
axioms of acquaintance and reducibility postulate (respectively) the possibility
of knowing individuals and classes in terms of functions that possess a certain
epistemic transparency, a transparency embodied by acquaintance in the one
case and the absence of complex forms of quantiWcation in the other. Classes
occur in the hierarchy only under the guise of predicative functions, which are
the means by which they are known. Reducibility thus postulates a concordance
between mathematical reality and our knowledge of it that the ramiWed theory
is otherwise unable to demonstrate. (Demopoulos and Clark 2005, p. 158)
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3 On that score, there is an issue about whether it is possible or impossible, in Russell’s
view, that objects do exist without belonging to any epistemic universe. I leave that ques-
tion aside.

Once the epistemological background of Principiaz’s types is given
some attention, the reducibility schemata can be understood as meaning
that, for any propositional function, there is always an epistemic realiza-
tion in which that function, as a symbol, is interpreted by a genuine
term. In the case of individuals, any object introduced by a deWnite
description and assumed to exist (as opposed to “the actual king of
France”), must correspond, up to a shift in epistemic context, to an
actual individual. This is a kind of quasi-acquaintance principle.

In the case of propositional functions, the axiom schema says that any
non-empty functional term corresponds, in some epistemic universe, to
an actual predicate, going in fact with a whole list of conditions. Let’s
consider, for example, a translation pattern such as

[(fz) . f z!z(fz!zẑz, xz)]S1
 / [Fxz]S2

(’).

This equivalence holds even though, among all the predicates fz at stake
in (’) that Sz1 has access to, there are some for which Sz2 does not have any
predicative counterpart. Suppose now that fyzz!z(yf̂, ̂zz) itself belongs to Sz2’s
epistemic universe. Then, for any particular Gz also belonging to that
universe, Fx . 'x . fyz(Gz!zẑz, xz) has to be valid in Sz2’s realization. The
validity of Fx . 'x . fyz(Gz!zẑz, xz) is part of the list of conditions that goes
along with (’).

Once again, I think that epistemic realizations are the semantic count-
erpart of the theory of logical types, and that distinguishing the latter
from the former is the only way to understand the status of non-pred-
icative terms—and in particular to understand their syntactic possibility
despite the fact that one never Wnds variables of non-predicative proposi-
tional functions in Principia. It should be added that epistemic subjects
mean nothing else here but complete epistemic diagrams, that is, ways
in which reality could be carved up. Hence, they are not metaphysically
loaded, and besides remain quite remote from actual concrete cognitive
subjects. So, in fact, a formal semantics based on epistemic diagrams has
only subsequent connections with epistemology properly speaking.3

The array of all possible interpretations of a single type, according to
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4 See Feferman 2004. According to Feferman, “the use of typical ambiguity is a way
of saving face” (p. 138) despite the fact that, as Russell himself acknowledges, “there are
as many 0’s as there are types.” Feferman proposes a system of set theory with countably-
many nested “reXective universes” Un, each of which is an elementary substructure of the
universe. The resulting system ZFz / U<vz, which is proved to be a conservative extension
of ZFz, is intended primarily to provide a foundational framework for category theory,
and in particular to account for cases of self-membership such as the category of all cat-
egories. Feferman considers that type theory, on the contrary, “doesn’t lend itself to the
Xexible expression of mathematical properties” (p. 140). In what follows, I wish to vin-
dicate both type theory, in the form of modern systems of lambda-calculus, and category
theory, by showing that the former is rich enough to formalize Russellian typical ambi-
guity, and that the latter is the only possible semantical framework for those systems.

diTerent epistemic perspectives, is the true content of its formality. Since
it is based on actual applications of ramiWed type theory to the analysis
of ordinary language and knowledge conditions, the generality thus
brought up can be said to be external. On the contrary, the ambiguityzz of
logical types, as justiWed in Russell and Whitehead’s “Prefatory State-
ment”, is a totally diTerent kind of generality bestowed on types in
Principia. Since it consists in the ability to use types as representatives of
indeWnitely many others, within the same hierarchy of purely logical
types, typical ambiguity can be described as an internal generality, rather
than as an external one. It is often conceived of as a useful device that
allows the system of Principia to have a type of all types without laying
itself open to the logical inconsistency of having such a universal type.
Though powerful and innocuous it may be, it is commonly considered
as an informal convention that is not really amenable to any intra-syste-
matic treatment, and, to that extent, it involves a kind of shortcoming of
the system.

On the contrary, I would like to defend the view that typical ambigu-
ity is an intrinsic part of the notion of logical type, and not a feature
merely tacked on to the conception of types as developed in the Intro-
duction. Typical ambiguity has been deemed to be an ad hocz solution to
discharge a generality that was at the same time precluded for impred-
icativity reasons. Russell was trying to “have his cake and eat it too”.4

Such a diagnosis can be corrected: typical ambiguity can indeed be un-
derstood as a feature that is on a par with the rest of the system. All that
is needed is to provide for its formal regimentation. Such a formalization
has been explored, in particular by Harper and Pollack (1991), but it does
not consider Principiaz as anything other than a historical landmark, and
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5 Bertrand Russell Archives, manuscript 230.030890, fos. 32–3.

involves the diUcult tools of the calculus of constructions. In the
following, I hope to show that a more simple extension of typed lambda-
calculus can be suUcient to formalize typical ambiguity in a neat way.

2.wtypical ambiguity and polymorphism of types

Typical ambiguity is actually a theme that shows up quite early in Rus-
sell’s logical works. This is borne out by a manuscript dating back to
1907, and entitled “Types”:

We must write f z!za for a function whose arguments are of any type other
than individuals: then

a e b’y(zf z!zbz) . = . f z!za Df

and so on. In this way, the theory of all types can be done at once.
There is some obscurity about the Primitive idea f z!za. May this contain ap-

parent variables of any type, however high? …
… We can construct f z!zfzx̂z with any f we like, and then substitute a more

complicated f. The fact that f may contain an fz as apparent variable does not
matter at all. The way to explain things is as follows:

(1).wfx stands for anything containing x, and being a proposition for every
value of x.

(2).wf z!zfzx̂z stands for anything containing values of f, and containing these
values with arguments which are constants or apparent variables, and containing
these values only in propositional positions.

(3).wF z!zf z!zyf̂yx̂z stands for anything containing values of fz in a similar way.
The point is that fz and Fz stand for ways of construction, and do not pre-

suppose any knowledge of what is to be put in as argument beyond what can be
got from lower types alone.5

The “ways of construction” to which Russell refers in 1907 are con-
strued a few years later, in Russell and Whitehead’s “Prefatory State-
ment”, as “symbolic forms”. A symbolic form is nothing other than what
diTerent types have in common, to the extent that they arise from the
same functional skeleton, for diTerent typical determinations of the var-
iables. Thus typical ambiguity conWrms that types are not levels or do-
mains, but themselves propositional schemes:
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6 See Scedrov 1990.
7 Crole 1993, p. 202. 

When a proposition containing typically ambiguous symbols can be proved
to be true in the lowest signiWcant type, and we can “see” that symbolically the
same proof holds in any other assigned type, we say that the proposition has
“permanent truth.” …

It is convenient to call the symbolic form of a propositional function simply
a “symbolic formz”. Thus, if a symbolic form contains symbols of ambiguous type
it represents diTerent propositional functions according as the types of its am-
biguous symbols are diTerently adjusted.…

To “assert a symbolic form” is to assert each of the propositional functions
arising for the set of possible typical determinations which are somewhere en-
umerated. We have in fact enumerated a very limited number of types starting
from that of individuals, and we “see” that this process can be indeWnitely con-
tinued by analogy. (PMz 2: xii)

Admittedly, Russell and Whitehead’s resort to “seeing” betrays a kind
of embarrassment. Type variables would be needed to express formally
what Russell and Whitehead here allude to. But, for obvious reasons of
circularity, it is impossible to quantify over types. That is why typical
ambiguity has often been understood as a mere corrective. My aim is to
qualify that predicament, drawing on modern type-theoretic frameworks.
A recent paper (Kamareddine et al. 2002) shows that the theory of logical
types can be formalized by means of a lambda-calculus. But typical
ambiguity is left aside. I would like to extend the suggestion by showing
that typical ambiguity can be captured, on one condition: shifting to
stronger “polymorphic” type-theoretic calculi.

2.1wTypical ambiguity as parametricity
Polymorphism is a feature of programming languages in which

“generic data types” are introduced that allow programmers to express
the generality of uniformz algorithms.6 An example of that kind of behav-
iour is the programme which performs the swapping of the values of two
variables ranging over integers:7

swap (var m, nz: Int)
var tz: Int
Begin
tz: = m
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m = n
nz: = t
End

It is clear that the programme works exactly the same for variables of any
other type. It is, of course, much more eUcient to be able to implement
a general swapping programme, regardless of the type of the variables.
This is made possible by the introduction of type variablesz:

general swap (type: Xzz; var m, nz: Xy)
var tz: X
Begin
tz: = m
mz: = n
nz: = t
End

where the type variable Xzz is assigned a value at each call of the proce-
dure.

This is exactly the kind of situation that Russell had in mind. Type
variables have been introduced in the realm of modern type theories to
substantiate the idea that certain procedures have a generic value.

2.2wPolymorphic second-order type theory
Polymorphic second-order type theory (pso) is actually a whole family

of formal systems of typed lambda-calculus which provide a formal syn-
tax for writing down functional terms and which include variables of
types. The characteristic feature of pso is that it allows explicit ab-
straction or quantiWcation on type variables, both in types and terms,
giving rise to “polymorphic types” and “polymorphic terms”. That is
why pso is also called “impredicative type theory” (inasmuch as a type
can be introduced through a quantiWcation over the collection of all
types).

In ordinary lambda-calculus each term codes a proof of the proposi-
tion coded by its type: this is the “propositions-as-types” interpretation.
Consequently, any polymorphic term takes types as inputs (including its
own type), giving terms as outputs, and can be viewed as a generic proof,
that is, as a uniform procedure to prove propositions which diTer only
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8 I follow here Roy Crole’s exposition of pso given in Crole 1993.

with respect to the kind of things to which they pertain, and whose re-
spective proofs, consequently, are “structurally” the same. A polymorphic
term is nothing but the representation of the pattern common to ana-
logous proofs. This holds for proofs as well as for operations such as the
swapping of values.

Let me Wrst set out the main lines of pso. The basic type symbols are
type variables X, Y, Z, …. Types are then constructed inductively
through construction rules. In particular, if “Fy” is any type symbol of
non-zero arity n, and if F1, …, Fn are nz types, then Fy(F1, …, Fnz) is a
type (think here of propositional connectives as binary functional types).
On top of that, if a type variable Xz occurs in a type Fy(Xzy), second-order
abstraction ;Xz gives rise to a universal type ;X . Fy(Xyz). The syntax is
summed up in the following list:8

F : = Xz  *  Fy(F, …, F) (for instance F × F and F vzF)  *  ;X . F.

The rules to generate well-formed types refer to type contexts, that is, lists
D of distinct type variables that are supposed to serve as elementary
blocks for the construction of the well-formed (or “proved”) types.

Proved types:

C Variables:

D, X, DN|X

C Functions:

D|F1ww…wwDz|Fn

Dz|Fy(F1, … Fnz)

C Universal types:

D, X |Fz
w Dz|;X . Fww

(X eª D)
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Using the rules above, derivation trees can be built whose conclusion is
a judgment Dz|F, called a proofz of the type F in the context D.

Terms are deWned starting with variables of diTerent types, and then
using construction rules: function symbols a with speciWed arity and
sorting szz(az) = [F1, …, Fn, F], term abstraction and application, type
abstraction and application. This gives the following term syntax:

f  = xz  *  asz(a)(zf, …, fzyz)  *  lx : F . fzz  *  f fy  *  lX . fy  *  fy Fz.

As one can see, types are not only used to type terms, but also, as var-
iables, to build them. Terms having (possibly besides term variables) type
variables among their constituents can then be considered as “parame-
trized” proofs or operations. To return to the former example of the
swapping of values, lx : Int . ly : Int . +zy, xz, generalizes into LX . lx :
X . ly : X . +zyz, xz,.

As is the case for types, rules for generating well-typed terms mention
contexts. A term context is a sequence G = [xz1 : F1, …, xm : Fmz] of
distinct typed variables (the variables are said to make up the domain of
the context, domz(G)). One writes D|G (D being a type context) to mean
D|Fiz for each Fiz in G.

Proved terms (typing rules):

C Term Variables:

D|GwwwwD|FwwwwD|GN
Dz2 G, xz :zzF, GN|xz :zzF

C Binary Products:

Dz2 G |fz :zFwwwwD2 G |f zNz:zC
Dz2 G | +zf, f zN,z : zF × C

C Functional abstraction:

D2 G, xz :zzFzz|fz z:zC
D2 G |lxz :zzF . fz z:zzF vyC
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C Application to a term:

D2 G |fz :zF vzCwwwwD2 G |g : F
D2 G |fygz : C

C Type abstraction:

D, X 2 G |fz z: F
D2 G |LX . fz z:zz;X z. F (Xz eªzyGz)

C Application to a type:

D2 G |fz z:zz;X .zFwwwwD|zC
D2 G |fy C : Fy[C/Xy]

The above-mentioned rules allow one to construct derivation trees for
judgments D2 G |ty : F, called a proofz of the term t :zzFz in the double
context D, G.

It remains to set the conversion rulesz—zthat is, the rules of the
lambda-calculus properly speaking, which consist in equalities between
proved terms:

C Functional equalities:

D2 G, xz : Fzz|Fz :zCwwwwD2 G |fz :zF
D2 G | (lxz :zzF . Fy)f = Fy[zf /xz] :zzC

C Polymorphic equalities:

D, X 2 G |fz :zFwwwwD |zC
D2 G | (LX . fyzz)zC = f z[C/Xy] :zzF [C/Xy] (Xz eªzyGz)

As we can Wnally see, pso allows a type-theoretic formalization of
vicious circularity. Indeed, a polymorphic type such as LXz .zTy(Xy) can
be applied to any type, including itself. Besides, a polymorphic term
takes as input any type, including its own. This clearly violates the
vicious-circle principle. How could it be possible, on that basis, to catch
up with Principiaz’s theory of logical types?
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2.3wTypical ambiguity in polymorphic clothing
Following Kamareddine et al. (2002), one can think of Principiaz’s

theory of logical types as a type theory with propositional functions in-
stead of lambda-calculus terms, and types in the sense of Principiaz in-
stead of propositions-as-types. But it remains to implement the rules for
polymorphic lambda-calculus so as to formalize typical ambiguity.

In compliance with the Wne-grained presentation of types I have advo-
cated earlier, the rules for types are:

(i) oz = +! ; !,o is a ramiWed type (the type of individuals);
(ii) if tya1

1 , …, tyam
m , uyb1

1 , …, uybn
nwware ramiWed types, then +tya1

1 , …, tyam
m y;

uyb1
1 , …, uybn

nw,
g is a ramiWed type, with g = max(aiz, bjz) + 1.

(As already stated, the mention of orders is in fact redundant.)
Let’s move on now to the typing rules. All propositional functions

here are considered up to “a-equivalence”, that is, up to a change of var-
iables (in keeping with their respective types). The main rules are:

C Individuals:

D2 G |a : o

C Functional variables:

Dz|zGwwwwDz|zFwwwwDz|zGN
D2 G, fzz :yF, GN|fz z:yF

C Connectives:

D2 Gz|f  : t
D2 G | ~ f  : t

D2 G |f  : (tz1, …, tzmz; uz1, …, uznz)wD2 G |g : (tzN1, …, tzNkz; uN1, …, uNlz)
D2 G |f   g : (tz1, …, tzmz, tzN1, …, tzNkz; uz1, …, uznz, uN1, …, uNlz)

(merging the types corresponding to identical variables or constants)
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C Abstraction from parameters:

D2 G |g : twwwwD2 G |f  : (tz1, …, tzmz; uz1, …, uznz)
D2 G |f  [zztz/gz] : (tz1, …, tzmz; uz1, …, uznz, tz)

(where gz is a parameter in fzyz)

C QuantiWcation:

D2 G, xj : uj |f  : (tz1, …, tzmz; uz1, …, ujz, …, uznz)
D2 G | (xjz) . f  : (tz1, …, tzmz, ujz; uz1, …, ujz!1z, uj+1z, …, uznz)

(xzjz is the j-th free variable in fyzz)

C Polymorphism:

D, Xy2 Gy|f  : twwwwfz is predicative
wwwwwwwwD2 G |LX . f  : ;X . twwwwwww (X eª G)

C Type Application:

D2 G |LX . f  : ;X . twwwwDz|tzN : Type
D2 G | (zfzyz)tzN : ty[tzN/Xy]

The resulting system prtt (polymorphic ramiWed type theory) aims
at formalizing Principiaz’s theory of logical types when typical ambiguity
is built into the theory.

In Kamareddine et al. (2002) a rule for abstraction from propositional
functions is needed:

G, y : ti
ai | f  : (t1

az1, …, tn
anz)a wwfz is predicativew wFV(zfzyz) # domz(Gz)

G :y{z : (t1
az1, …, tn

anz)ay} | zy(zy1, …, ykz) : (t1
az1, …, tn

anz, (t1
az1, …, tn

anz)az)a+1

(z eª domz(G))

Such a rule is not needed in prtt: variables of any type can be intro-
duced at the onset, because all bound variables are recorded within each
type, as in the Term Variables rule of pso.
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2.4wTypical ambiguity and type-theoretic genericity
There is a way to extend type-theoretically the idea of typical ambigu-

ity while sticking more closely to Russell’s conception. Indeed, typical
ambiguity in the “Prefatory Statement” is an example of parametric gen-
erality, as opposed to quantiWcational generality. Picking up on a sug-
gestion due to Carnap (1983, p. 51), Giuseppe Longo and Thomas Fru-
chart have suggested accounting for the “generic” value of types in pso
by adding the following:

“Axiom C”: If M : ;X . s zand X is not among the free variables of s, then
Mt = MtN for all types t, tN.

Axiom C intuitively means that an input (tz), which is not used to establish
the type (as sz does not depend on Xy) of the corresponding output value (Mtz),
bears no information as input. So if Mz has the type ;X . sz and X is not free in
the type sz (i.e. sz is not a function of Xy), then it does not matter whether one
applies M to tz or tN and one may consider both results to be equal.

(Fruchart and Longo 1999, p. 46)

Axiom C is consistent with Girard’s system F, and the system Fc = F +
Axiom C can prove the following “Genericity Theorem”:

Let M and N have typez ;X . s. If Mt =Fc Nt for one type t, then M =Fc N.

“In other words, the behaviour of polymorphic terms is so ‘uniform’ that
one can reduce Fc equality on every possible types [sicz] to Fc equality on
one single type t (no matter which one!)” (ibid.). That means that the
proof or computation coded by a polymorphic term does not depend on
the input type: in some cases, a particular instance sz[F/Xy], being par-
ametric in F, can be described as being obtained by the uniform sub-
stitution of F for a type variable X, and thus may suUce to determine the
fully general proof, i.e., to get to the universal ;X . s. When this hap-
pens, the type F is said to be generic. This is not always the case, other-
wise any term s : Fz could lead to a proof of the absurdum ;X .yX.

But Russell precisely does not claim that every proposition containing
typically ambiguous symbols can be proved to be true in any assigned
type or, in other words, that it has “permanent truth”. Typical ambiguity
is brought into play only in the speciWc realm of “formal arithmetic”.



M
a

y 
1

4
, 

2
0

11
 (

1
0

:0
0

 a
m

)

C:\Users\Milt\WP data\TYPE3101\russell 31,1 078 red 002.wpd

104 brice halimi

9 See Reynolds 1984 and Jacobs 1999, 8.3.3.

Type-theoretic genericity can be a way to describe accurately the fact that
arithmetical truths, particularly, have a “stable truth-value”.

2.5wSemantical issues
Let’s now look at a natural set-theoretic semantics forz prtt. The idea

is to interpret each type uz as a set, namely as the set [uy] of all the terms
whose type is uz. Because of the quantiWcation binding type variables,
types are considered themselves as members of a set z of sets, so that
functions between the sets in z can serve as interpretations of terms:

C [oz] = I e zy;

C If [zf (xz)] e A = [(tz1, …, tzmz; uz1, …, uznz)] e zz for any x : tz with
B = [tz] e z, then [zfzy] e BzAe zy;

C If [zfzy] e A = [(tz1, …, tzmz; uz1, …, uznz)] e zz and Azj = [uzjz] e z, then
[(xzjz) . fzy] e wP

y e [Azjz]
 [zfz (zyz)];

C If LX . f  : ;X .zFz and Fz = [Xtv Fzz(Xy)] e , then
[LX . fyz] e wP

X e 
wFy(Xy) e z.

To take stock: zz contains a (presumably) non-empty set Iz of individ-
uals and is closed under exponents as well as under dependent products
over z (for any F e , wP

X e 
wFy(Xy) e z ). It turns out that there cannot

be any such set-theoretic model of prrt. Indeed, John C. Reynolds
proved that there is not set of sets z zthat is closed under exponents and
dependent products over itself, except for a set zz whose every member
X e zz has at most one element.9 This would imply in particular that
there is only one individual (one element only in Iy). This is, of course,
not practicable as an option.

Actually, one of the main available interpretations of polymorphic
type theory is not set-theoretic, but pertains to “Wbred category theory”.
More speciWcally, proved types Xz1, Xz2, … Xzn | Fz zare interpreted as
maps [Xz1, Xz2, … Xzn | Fzz] : Uzn v U in a category Cz consisting of all the
Wnite products of some distinguished object Uz. A proved type is thus a
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10  See Jacobs 1999, p. 173.

member of some Czz(Uzn, Uy). For example, the proved type Xz1, Xz2 | Xz1
is interpreted as the projection Uy2 v Uz. Then, the rules of derivation of
proved types become maps between such Czz(Uzn, Uy)’s. For example,
binary product consists in a family of operations Bn : Czz(Uzn, Uy) × Czz(Uzn,
Uy) v Czz(Uzn, Uy), and abstraction on types in a family ;n : Czz(U × Uzn,
Uy) v Czz(Uzn, Uy). Finally, for each proved term Xz1, … Xzn 2  F1, …, Fm| f  : F, suppose that each proved type Fjz has been interpreted as fj =
[Xz1, …, Xzn | Fjz] e Czz(Uzn, Uy), and that F has been interpreted as
fx=x[Xz1, …, Xzn | F] e Czz(Uzn, Uy). It is then natural to interpret fz as a
morphism [zfyz] : fz1 × … × fzm v f in the category Czz(Uzn, Uy). It is, of
course, necessary to throw in further constraints in order to account for
the typing rules, as well as for the functional and polymorphic equalities.

Still, the underlying idea is clear: it is to consider a base category C
consisting of all the Wnite products of some object U, and to assign to
each object Uzn in Cz—zthought of as a type contextz—zthe “Wbre” Czz(Uzn,
Uy), that is, a category whose objects are proved types in that context,
and whose morphisms are corresponding proved terms. The judgment
zD2 G | t z: Fz becomes a logical relation in the Wbre over the type
context Dz|zG. Hence, each such type context becomes an index for a
logic describing what happens in that context,10 and substitution of a
type for a type variable amounts to reindexing.

Since categorical semantics is called for as a way to handle impred-
icativity, it would be interesting to see how to adapt it to the case ofz
prtt. I leave it for further examination.

2.6wConclusion
To sum up brieXy, there are two kinds of generality of logical types in

Principiaz: formality, which is an external generality peculiar to types, and
ambiguity, which is an internal one. Even though typical ambiguity is de-
scribed by Russell himself as a form of context relativity (PMz 1: 65), these
two kinds of generality are independent and should not be confused. The
Wrst one has to do with the fact that type theory gives rise to a variety of
realizations, so that each type will be inhabited by diTerent terms ac-
cording to the epistemic perspective that is considered. The second one
has to do with typical ambiguity properly speaking, not as a shortcoming
or a stopgap of Principiaz’s system, nor as a slackening in the original
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logical seriousness, but as a positive feature that can be accounted for in
a logical way.

Each of the two threads that I have just set out gives rise to a semanti-
cal perspective. In the Wrst case, I have argued that each epistemic real-
ization of the formal system of ramiWed type theory constitutes in its own
right a “model” of that theory. In the second case, I have brought up the
possibility of construing typical ambiguity polymorphically, and to
provide the resulting polymorphic ramiWed type theory with a model,
along the lines of the categorical interpretation of second-order lambda-
calculus. These two perspectives are enough to suggest substantial con-
nections between Principiaz’s logic and modern semantics.
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